Abstract:
The invention belongs to the technical field of low dielectric resin compositions, and discloses a low dielectric resin composition with phosphorus-containing flame retardant and a prepreg, resin film, laminate and printed circuit board prepared therefrom. The composition comprises the following components: (A) phosphorus-containing flame retardant; (B) vinyl compound. The phosphorus-containing flame retardant has a structure as shown in formula (I). In the present invention, diphenylphosphine oxide is derivatized, and prepared a phosphorus-containing flame retardant, which has no reactive functional groups, has better dielectric properties, and has high melting point, and upon combining with a vinyl compound, a resin composition is obtained, and a laminate having low thermal expansion ratio, high heat resistance, high glass transition temperature, and low dielectric constant and dissipation factor, can be made from the resin composition, and can effectively achieve the flame resistance effect of UL94 V-0 without using halogen-containing flame retardant, and can be used in the preparation of prepregs, resin films, resin coated coppers, flexible resin coated coppers, laminates and printed circuit boards.
Abstract:
The present invention relates to a phosphazene compound containing an ester group having a structure of formula (I). The present invention grafts ester groups to phosphazene compounds and makes terminal grafted hydroxyl and carboxyl groups reacted with polymer matrix, producing an improvement of flame retardancy and a reduction of dielectric constant at the same time when the phosphazene compound is introduced into polymer matrix. Since N and P atoms are directly bonded into the polymer matrix by a reaction rather than addition and combination means in the prior art, there is no reduced mechanical properties of the matrix due to the addition of flame retardants.
Abstract:
Disclosed are a halogen-free resin composition, and a prepreg and a laminate prepared by using the same. The halogen-free resin composition comprises the following components according to organic solid matters by weight parts: (A) 40-80 parts by weight of allyl modified benzoxazine resin; (B) 10-20 parts by weight of hydrocarbon resin; (C) 10-40 parts by weight of allyl modified polyphenylene oxide resin; (D) 0.01-3 parts by weight of initiating agent; (E) 10-100 parts by weight of filler; and (F) 0-80 parts by weight of phosphoric flame retardant. The prepreg and the laminate prepared by using the halogen-free resin composition have lower dielectric constant and lower dielectric loss tangent value, higher peeling strength, higher glass transition temperature, excellent heat resistance and good flame retardant effect.
Abstract:
A laminate with superior thermal conductivity, heat resistance, drill workability, and fire retardancy is provided. In a prepreg obtained by impregnating a woven or nonwoven fabric base with a thermosetting resin composition, the thermosetting resin composition contains 80 to 200 parts by volume of an inorganic filler per 100 parts by volume of a thermosetting resin, the inorganic filler contains (A) gibbsite type aluminum hydroxide particles having an average particle diameter (D50) of 2 to 15 μm and (B) magnesium oxide having an average particle diameter (D50) of 0.5 to 15 μm, and a compounding ratio (volume ratio) of the gibbsite type aluminum hydroxide particles (A) to the magnesium oxide (B) is 1:0.3 to 3.
Abstract:
A thermosetting resin composition contains a thermosetting resin, a hardener capable of reacting with the thermosetting resin, and a flame retardant. The flame retardant contains a first phosphor compound compatible with a mixture of the thermosetting resin and the hardener, and a second phosphor compound incompatible with the mixture.
Abstract:
Disclosed is a polybenzoxazime precursor and a method of preparing the same. The polybenzoxazime precursor is used to prepare a hardened material having improved thermal characteristics, having high thermal and flame-retardant characteristics while maintaining its excellent electrical characteristics, or having high thermal and electrical characteristics, thus being available for use in a copper clad laminate, a semiconductor encapsulate, a printed circuit board, an adhesive, a paint, and a mold.
Abstract:
Resin compositions, e.g., epoxy resin compositions, comprising flame retardant materials obtained by heating phosphonic acid salts at temperatures above 200° C., have excellent properties and exhibit manageable curing behavior. Laminates, composites, molded articles and the like, which have excellent flame retardant properties and physical characteristics, are readily prepared from the resin compositions of the invention.
Abstract:
A coated electronic device that is fire resistant includes an electronic component and an intumescent layer disposed over the electronic component. The intumescent layer includes sodium silicate having formula Na2SiO3, pentaerythitol, a resin that is cross-linked by melamine, boron nitride particles, and triammonium phosphate.
Abstract:
A low dissipation factor resin composition comprises the following components: (A) an aromatic tetrafunctional vinylbenzyl monomer, its prepolymer or a combination thereof, the aromatic tetrafunctional vinylbenzyl monomer having a structure shown below; (B) flame retardant; and (C) peroxide. The resin composition is applicable to laminates and printed circuit boards featuring low dissipation factor at high frequency and thermal resistance and thermal expansion meeting the demands.
Abstract:
A resin composition contains a cyanate ester compound, a maleimide compound, an epoxy resin, a silicone rubber powder, and an inorganic filler. The cyanate ester compound contains a compound represented by the following formula. The silicone rubber powder is contained in an amount of 40 to 150 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin. The inorganic filler is contained in an amount of 100 to 340 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin. A total content of the silicone rubber powder and the inorganic filler is 140 to 380 parts by mass based on 100 parts by mass in total of the cyanate ester compound, the maleimide compound, and the epoxy resin.