Abstract:
A catalytic reactor is provided comprising a plurality of first flow channels including a catalyst for a first reaction; a plurality of second flow channels arranged alternately with the first flow channels; adjacent first and second flow channels being separated by a divider plate (13a, 13b), and a distributed temperature sensor such as an optical fiber cable (19). The distributed temperature sensor may be located within the divider plate, or within one or 10 more of the flow channels.
Abstract:
Disclosed is a hydrocarbon conversion process in which an alkane component is catalytically converted in the presence of an oxygen or oxidizing component (i.e., oxidant). The hydrocarbon conversion process can be an oxidative coupling reaction, which refers to the catalytic conversion of alkane in the presence of oxidant to produce an olefin product, i.e., a composition containing C2+ olefin. Reverse-flow reactors can be used to carry out the oxidative coupling reaction.
Abstract:
Disclosed is a technology based upon the nesting of tubes to provide chemical reactors or chemical reactors with built in heat exchanger. As a chemical reactor, the technology provides the ability to manage the temperature within a process flow for improved performance, control the location of reactions for corrosion control, or implement multiple process steps within the same piece of equipment. As a chemical reactor with built in heat exchanger, the technology can provide large surface areas per unit volume and large heat transfer coefficients. The technology can recover the thermal energy from the product flow to heat the reactant flow to the reactant temperature, significantly reducing the energy needs for accomplishment of a process.
Abstract:
Technologies are generally described for forming graphene and structures including graphene. In an example, a system effective to form graphene may include a chamber adapted to receive graphite oxide. The system may also include a source of an inert gas and a source of hydrogen, which may both be configured in communication with the chamber. A processor may be configured in communication with the chamber, the inert gas source and/or the hydrogen source. The processor may be further configured to control the flow of the inert gas from the first source through the chamber under first sufficient reaction conditions to remove at least some oxygen from the atmosphere of the chamber. The processor may also be configured to control the flow of the hydrogen from the second source to the graphite oxide in the chamber under second sufficient reaction conditions to form graphene from the graphite oxide.
Abstract:
The present disclosure provides a reactor and a method for the production of high purity silicon granules. The reactor includes a reactor chamber; and the reaction chamber is equipped with a solid feeding port, auxiliary gas inlet, raw material gas inlet, and exhaust gas export. The reaction chamber is also equipped with an internal gas distributor; a preheating unit; and an external exhaust gas processing unit connected between the preheating unit and a gas inlet. The reaction chamber is further equipped with a surface finishing unit, a heating unit, and a dynamics-generating unit. The reaction occurs through decomposition of silicon-containing gas in a densely stacked, high purity granular silicon layer reaction bed in relative motion, and uses the exhaust gas for heating. The present invention achieves a large-scale, efficient, energy-saving, continuous, low-cost production of high purity silicon granules.
Abstract:
The present invention provides a reactor and a method for the production of high purity silicon granules. The reactor includes a reactor chamber; and the reaction chamber is equipped with a solid feeding port, auxiliary gas inlet, raw material gas inlet, and exhaust gas export. The reaction chamber is also equipped with an internal gas distributor; a heating unit; an external exhaust gas processing unit connected between a preheating unit and a gas inlet. The reaction chamber is further equipped with a surface finishing unit, a heating unit and a dynamics generating unit. The reaction is through decomposition of silicon containing gas in densely stacked high purity granular silicon layer reaction bed in relative motion, and to use remaining heat of exhaust gas for reheating. The present invention is to achieve a large scale, efficient, energy saving, continuous, low cost production of high purity silicon granules.
Abstract:
A water treatment composition includes a water soluble film formed into a sealed pouch. The pouch contains a composite of a phosphate removing substance, a polymer flocculant, or an enzyme, or any combination. The phosphate removing substance, the polymer flocculant, and the enzyme are bound to each other within the composite. The pouch is added to a body of water. The pouch dissolves to release the compounds and treat the water.
Abstract:
An apparatus of the present invention for producing aligned carbon nanotube aggregates is an apparatus for producing aligned carbon nanotube aggregates, the apparatus being configured to grow the aligned carbon nanotube aggregate by: causing a catalyst formed on a surface of a substrate to be surrounded by a reducing gas environment constituted by a reducing gas; heating at least either the catalyst or the reducing gas; causing the catalyst to be surrounded by a raw material gas environment constituted by a raw material gas; and heating at least either the catalyst or the raw material gas, at least either an apparatus component exposed to the reducing gas or an apparatus component exposed to the raw material gas being made from a heat-resistant alloy, and having a surface plated with molten aluminum.
Abstract:
The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
Abstract:
Surface-active solid-phase catalyst activity may be substantially improved by creating deliberate repetitive surface-to-surface contact between portions of the active surfaces of catalyst objects. While they are immersed in reactant material such contact between portions of the active surfaces of catalyst objects can substantially activate the surfaces of many heterogeneous catalysts. Examples are given of such action employing a multitude of predetermined shapes, supported catalyst structures, etc. agitated or otherwise brought into contact to produce numerous surface collisions. One embodiment employs a gear pump mechanism with catalytically active-surfaced gear teeth to create the repetitive transient contacting action during pumping of a flow of reactant. The invention is applicable to many other forms for creating transient catalytic surface contacting action. Optionally catalytic output of such systems may be significantly further improved by employing radiant energy or vibration.