Abstract:
In an apparatus for measuring a spectral property such as a total spectral radiant factor of a fluorescent sample, a weight factor is previously calculated by using a standard fluorescent sample in which an index of a spectral property such as a total spectral radiant factor is known. When a spectral intensity distribution of a fluorescent sample to be measured is measured, the measured spectral intensity distribution is corrected similar to a value when the fluorescent sample is illuminated as if the same illumination light when the weight factor is set. As a result, the error component in the measurement result due to the variation of the illumination light in a time period from the setting of the weight factor to the measurement of the fluorescent sample can be reduced.
Abstract:
Improved calibration of optical wavelength measuring instruments. In a first embodiment, improved calibration is achieved in an optical wavelength measuring instrument by performing calibration measurements at a plurality of known wavelengths and using an average calibration constant derived from the plurality of measurements. In a second embodiment, improved calibration is achieved by performing calibration measurements at a plurality of known wavelengths and calculating a linear or higher order calibration model, or a periodic model. These approaches may be extended by segmenting the wavelength range and using different calculated calibration values, or different calibration models, for each segment.
Abstract:
The long-term stability of the analytic accuracy of spectroscopic measurements is often limited by wavelength axis instabilities of the hardware. A dedicated optical element called the inverse sample element (4) is inserted into the path of the measurement light. The optical response of the inverse sample element (4) is determined from the spectral response of the average sample (3) in such a way that wavelength axis instabilities of the instrument hardware cause opposite and nearly cancelled amplitude effects in the resulting absorbance spectrum. The inverse sample element (4) can be movable or permanently mounted inside the instrument and is preferably made from a thin-film structure.
Abstract:
A process and an apparatus preferably used during the photocagulation of the fundus of human eyes or animals measures density fluctuations caused by pulsed irradiation, such as a laser irradiation source, on a material. A wherein a measuring signal is acoustically or optically detected. The change of the intensity and/or of the time slope of the measuring signal resulting from the irradiation of a specific material point is detected. A linear thermo-elastic signal fraction is removed from the measuring signal.
Abstract:
An SNR calculation method having the steps of measuring the wavelength characteristic of a dynamic range in an optical spectrum measurement apparatus for each wavelength in a multiplexed wavelength range and storing the wavelength characteristic in a storage unit, measuring the signal level and the noise level of a measured optical signal wavelength, reading the noise level of the wavelength of the measured optical signal produced by each of other optical signal wavelengths multiplexed on the measured optical signal wavelength from the storage unit, subtracting the noise level read from the storage unit from the noise level of the measured optical signal wavelength to provide the corrected noise level, and calculating the SNR of the measured optical signal from the measured optical signal level and the corrected noise level.
Abstract:
An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.
Abstract:
A system and method for real time process control, using a linearly swept tunable laser, which allows high speed in-situ monitoring and control of wavelength-specific properties of optical components. The invention comprises scanning an optical component with a high speed, high linearity tunable laser, and detecting optical output from the component during the scanning. Preferably, the invention also includes adjusting or controlling the optical properties of the component during scanning, according to detected optical output from the component. The invention is embodied in a process control system comprising a high speed, high linearity, tunable operatively coupled to an optical component which in turn is operatively coupled to an optical detector. A system control processor is operatively coupled to the tunable laser and detector. A processing control unit is associated with the optical component and is operatively coupled to the system control processor. In operation, the optical component is scanned by the tunable laser, and real time process control of one or more wavelength specific properties of the optical component may be carried out according to feedback from the optical detector and process control unit.
Abstract:
A multi-channel spectral imaging module for an automated testing system for cytological applications. The multi-channel spetral imaging module generates four channels of digitized images of a cytological specimen for further processing in the automated testing system. The multi-spectral imaging module comprises a visible light source and an infrared light source, an optical imaging module, a prism module, and an output stage. The cytological specimen is strobed by the visible light and infrared light sources and the illuminated images of the specimen are focussed and coupled to the prism module by the optical imaging module. The prism module breaks the illuminated image into four channels comprising three visible light channels and an infrared channel. The output stage comprises a CCD array sensor for each channel. The CCD array sensor digitizes the image for channel and produces an output for further processing. The digitized output from the infrared channel provides additional information which is used by the automated testing system. The additional information derived from the infrared channel includes segmentation information, new identifying features for the specimen, and discrimination measures independent of the visible light channels. In another embodiment, a fifth channel is provided for a reference infrared output and the two infrared channels are operated in a differential mode.
Abstract:
A robust two spectral band radiometer for long-term stand-alone spectral radiance measurements in the field is provided. The instrument can be used to monitor various surface parameters over prolonged periods of time by automatically collecting spectral radiance measurements at a user selected time interval (minutes to days). Two main applications are the monitoring of water surface parameters, such as total SSC and turbidity, and on-land vegetation by collecting spectral radiance measurements in a broad visible red and near-infrared spectral bands. Use for other application is possible using different spectral bands and multiple radiometers. Also included is the use of a ratioing technique to correlate the spectral radiance values rather than spectral reflectance values to the surface parameters of interest; this simplifies both the filed instrumentation requirements and post processing procedures.
Abstract:
A system and method for fast peak finding in an optical spectrum prioritizes the information it first generates and how the information is then forwarded from the system to a host computer, for example. A spectrum detection subsystem generates a spectrum of an optical signal. An analog-to-digital converter converts the spectrum into sample data. Finally, a data processing subsystem first detects the spectral locations of peaks in the spectrum using the sample data and then uploads the peak information to a host computer before performing processing to determine the shapes of the peaks and/or noise information for the optical signal, for example. The system is thus able to quickly find some information, such as whether or not channels or carriers are present, at what frequency the carriers are operating, and the carriers' power level, and send this information to the host computer. In contrast, information concerning spectral shape or the noise floor is sent later in time.