Abstract:
A characteristic response of a medium to an excitation transient of predetermined duration which causes the medium to emit a series of signals over a period of time which is long relative to the duration of the excitation transient is assessed. The signals are detected and the duration of each interval between successive signals is measured. A relationship relating the interval between the excitation transient and the emission of each signal to the interval between each signal and the preceding signal in the series is derived to represent the characteristic response.
Abstract:
A non-invasive portable apparatus for analyzing the performance of gas-filled window glazing units is disclosed. The operation of the apparatus is based on discharging the spacing between the panels (2a, 2b) of the window glazing unit (1) by applying rapidly alternating electrical field to the spacing between the panels of the window glazing unit, on collecting and analyzing the emitted discharge light in different structural intervals. The discharge is created by a needle-like electrode (5), and the inner conducting layer (2a) of the glazing unit serves as another electrode. The localization of the discharge in the vicinity of the end of the needle-like electrode (5) makes it possible to collect the emitted light without routine adjustment of the optical system. In this case, factory-adjusted lenses (4a) can be used to collect the light from the discharge, and the collected light can be transported to light detectors (9a-9d) by using fiber optics (6), which eliminates influence of instability to the discharge geometry.
Abstract:
An apparatus for analyzing material, such as coal, comprises subjecting the coal (14) to laser light The laser light is used to vaporize and ionize a small amount of the coal to produce spectral emissions. A plurality of detection, (26, 30, 34) each of which detect a part of the spectrum of the spectrum emissions, collect spectral information and pass it to data collection means (38, 40, 42). The data is then analyzed to determine the presence and/or amount of one or more elements or species in the coal. In a preferred embodiment, the apparatus, has a plurality of data collection means (26, 30, 34), with each of the plurality of detection means being associated with a respective data collection means (38, 40, 42). The apparatus provides rapid and accurate analysis of the coal. The apparatus may be used to analyze coal on conveyor belt or coal in a seam in the ground.
Abstract:
An element analyzer D comprises a combustion section 1 for burning a sample S, a sample injection member 2 for injecting the sample S into the combustion section 1, and a detection section 29 for measuring a gasified sample formed by burning the sample S in the combustion section 1. The element analyzer D further includes a cleaning-agent injection member 2 for injecting a cleaning agent W into the combustion section 1.
Abstract:
A method exites and determines a luminescence in an analyte sample which is located in contact with the waveguiding layer of an optical layer waveguide. The luminescence is generated by non-evanescent excitation in the volume of the analyte sample. Luminescence radiation generated in the immediate proximity of the surface of the waveguiding layer is conducted to a measuring device and determined after penetrating the waveguiding layer.
Abstract:
A method in which a multiplicative ratio approach is used to remove the effects of the unwanted background fluorescence when making fluoroescence polarization (FP) measurements rather than the conventional subtractive approach, thus preserving both the precision and accuracy of the FP measurements, is disclosed. The method comprises selecting an appropriate multiplicative ratio, then calculating the selected multiplicative ratio using sample measurements. The calculated multiplicative ratio is multiplied by an appropriate value in a standard FP measurement equation or an appropriate value in an equation derived from a standard FP measurement equation. After this, the corrected FP measurement is calculated. When such multiplicative ratios are applied to the appropriate value or values in an FP measurement equation, the effects of background noise can be reduced without decreasing the precision of the FP measurements.
Abstract:
A large number of cells can be evaluated in terms of their reaction state with molecular reactants under near-field optical conditions in a measuring and evaluation procedure of the invention. Light sources of different aperture diameters in the nano- or micro-range are disposed in a sample platform. The 2D-nano-light source array is embodied by a plurality of near-field light sources which are arranged in mutually juxtaposed relationship in raster form and are excited jointly or in succession. The carrier material used is a semiconductor material.
Abstract:
In an instrument generating images from the fluorescent emissions of a plurality of fluorescent dyes carried by objects in a flow stream, spectral dispersion is used to expand the images of the objects along one axis of a two-dimensional photosensor array according to emission wavelength. The dispersion is unable to completely separate the emissions of a plurality of dyes because the emission spectra of the dyes overlap in wavelength. The method of the present invention accomplishes accurate estimation of the intensity of the light received from each of a plurality of dyes by decomposing the two dimensional spectrally dispersed images into a set of characteristic parameters using either an iterative curve fitting optimization method or a linear algebraic method.
Abstract:
In a method of spectrochemical depth-profile analysis of heterogeneous materials, a first burst of ablation laser pulses in a first beam is directed at a sample to form an ablation crater. A second single pulse or burst of laser pulses in a second beam having a smaller width than said first beam is then directed at the bottom of the crater so as to create a plasma that emits radiation representative of a component in the sample without a significant contribution from the walls of the ablation crater. The intensity of radiation from the plasma is measured and the concentration of the selected component is determined from the intensity of the radiation. The depth at which the measurement is taken is then evaluated and the above steps repeated to determined the evolution of concentration of said selected component as a function of depth.
Abstract:
Process and apparatus for real-time determination of a solid sample composition as a function of the depth within the sample. The process comprises: forming a glow discharge (16) of atoms sputtered from an exposed area (17) of the sample (13) and analysing the glow discharge by optical emission spectroscopy; measuring the distance between said exposed area (17) and a fixed reference surface (12a) and determining from the measured distance the depth of the exposed area within the sample; and correlating the determined depth of the exposed area with the glow discharge analysis. Application to material analysis.