Abstract:
A method for transporting maintenance personnel at a cell tower includes, responsive to a requirement for a tower climb for one or more of a site survey, a site audit, maintenance, and installation at the cell tower, securing a person in a drone, wherein the drone includes flight components at a substantial length from the person allowing the flight components to fly over a top of the cell tower and to place the person directly adjacent to a desired location on the cell tower; flying the drone up the cell tower to locate the person directly adjacent to the desired location; and performing the one or more of a site survey, a site audit, maintenance, and installation at the cell tower.
Abstract:
Systems and methods for performing insurance damage inspection by an unmanned aerial vehicle (UAV) are provided. A computing device may receive a request to inspect a vehicle, the request comprising a location of the vehicle. The computing device may identify a UAV from a plurality of UAVs that is located closest to the location of the vehicle from other UAVs in the plurality of UAVs. The computing device may instruct the UAV to travel to the location of the vehicle. The computing device may instruct the UAV to collect damage information on the vehicle using one or more onboard sensors of the UAV. The computing device may determine an amount of insurance payout to approve for repairs to the vehicle based on the damage information collected by the UAV.
Abstract:
A method of determining geo-reference data for a portion of a measurement area includes providing a monitoring assembly comprising a ground station, providing an imaging assembly comprising an imaging device with a lens operably coupled to an aerial device, hovering the aerial device over a measurement area, capturing at least one image of the measurement area within the imaging device, transmitting the at least one image to the ground station using a data transmitting assembly, and scaling the at least one image to determine the geo-reference data for the portion of the measurement area by calculating a size of a field-of-view (FOV) of the lens based on a distance between the imaging device and the measurement area.
Abstract:
An image gathering system includes an intelligence, surveillance and reconnaissance (ISR) device, an isolation system with a damper, and a controller operatively associated with the damper. The damper has a vehicle coupling and a payload coupling, and the payload coupling is connected to the ISR system. The controller is operatively associated with the damper to change the damping coefficient of the damper based on an expected vibration signature of a vehicle coupled to the isolation system through the vehicle coupling of the damper.
Abstract:
In an approach to hazard detection, one or more computer processors receive a request from a first vehicle user for assistance from an unmanned aerial vehicle (UAV). The one or more computer processors locate a UAV. The one or more computer processors determine the location of the first vehicle. The one or more computer processors deploy the UAV to the location of the first vehicle. The one or more computer processors determine whether one or more hazards associated with a path of the first vehicle are detected.
Abstract:
A close-out audit method performed at a cell site subsequent to maintenance or installation work includes, subsequent to the maintenance or installation work, obtaining video capture of cell site components associated with the work; subsequent to the video capture, processing the video capture to obtain data for the close-out audit, wherein the processing comprises identifying the cell site components associated with the work; and creating a close-out audit package based on the processed video capture, wherein the close-out audit package provides verification of the maintenance or installation work and outlines that the maintenance or installation work was performed in a manner consistent with an operator or owner's guidelines.
Abstract:
Systems, methods, and devices are provided for providing flight response to flight-restricted regions. The location of an unmanned aerial vehicle (UAV) may be compared with a location of a flight-restricted region. If needed a flight-response measure may be taken by the UAV to prevent the UAV from flying in a no-fly zone. Different flight-response measures may be taken based on the distance between the UAV and the flight-restricted region and the rules of a jurisdiction within which the UAV falls.
Abstract:
An autonomous drone service system controls at least one drone vehicle configured to autonomously navigate along a flight path to provide one or more services requested by a user. The system includes an electronic service provider device to receive at least one service request signal generated by a user device. The request signal indicates at least one requested service provided by the drone service system and location or locations associated with the requested services. The electronic service provider device that automatically maps the at least one requested service to the at least one drone vehicle, and commands the at least one drone vehicle to perform the service request at the one or more locations.
Abstract:
An autonomous drone service system controls at least one drone vehicle configured to autonomously navigate along a flight path to provide one or more services requested by a user. The system includes an electronic service provider device to receive at least one service request signal generated by a user device. The request signal indicates at least one requested service provided by the drone service system and location or locations associated with the requested services. The electronic service provider device that automatically maps the at least one requested service to the at least one drone vehicle, and commands the at least one drone vehicle to perform the service request at the one or more locations.
Abstract:
A method for navigating an airborne device relative to a target comprises detecting, at an optical detector on the airborne device, an optical signal generated by one or more LEDs on the target. The method also comprises comparing, by a processor on the airborne device, the detected optical signal with a previously-detected optical signal. The method further comprises determining, by the processor based on the comparison, a change in location of at least one of the airborne device or the target. The method also comprises adjusting a position of the airborne device based on the determined change in location. The method also comprises predicting, by the processor, a movement of the target based on information indicative of at least one of a position, a rotation, an orientation, an acceleration, a velocity, or an altitude of the target, wherein the position of the airborne device is adjusted based on the predicted movement of the target. The method also comprises detecting an obstacle in a flight path associated with the airborne device and adjusting a position of the airborne device is further based, at least in part, on detected obstacle information.