Abstract:
An aerial vehicle system includes a flight system configured to generate propulsive force and lift, a protective framework, and an attachment mechanism secured to the protective framework and configured to selectively attach to a structure to provide stable perching of the aerial vehicle system. The attachment mechanism is an electro-permanent magnet device or a talon-like grip. The flight system is at least partially enclosed by the protective framework.
Abstract:
An unmanned aerial vehicle 2 comprising: a fuselage 4; and a wing 6 comprising a central wing section 12 pivotably mounted to the fuselage 4 and a pair of outer wing sections 14a, 14b pivotably mounted to the central wing section 12; wherein the wing 6 has a folded configuration in which the central wing section 12 and the outer wing sections 14a, 14b are stacked on top of one another and are aligned with a longitudinal axis of the fuselage 4; and a deployed configuration in which the central wing section 12 is substantially perpendicular to the fuselage 4 and the outer wing sections 14a, 14b extend from the central wing section 12 away from the fuselage 4.
Abstract:
An unmanned aerial vehicle according to the present invention includes a housing mounted on a vehicle and having an inner space, the housing provided with a launching unit, an unmanned aerial vehicle accommodated in the housing and configured to be launched from the housing when a driving state of the vehicle meets a preset condition, wing units mounted to the unmanned aerial vehicle and configured to allow the flight of the unmanned aerial vehicle in response to the launch from the housing, an output unit disposed on the unmanned aerial vehicle, and a controller configured to control the wing units to move the unmanned aerial vehicle to a position set based on information related to the driving state when the unmanned aerial vehicle is launched, and control the output unit to output warning information related to the driving state.
Abstract:
An unmanned aerial vehicle (UAV) may select a subject to track or follow and capture images including the subject. A visual recognition system of the UAV may generate a profile of reference images portraying the subject breaking the reference images down into pixel sets corresponding to the subject and his/her components and distinguishing characteristics (body parts, clothing, facial features, accessories). The visual recognition system may break the incoming stream of incoming images into pixel sets, analyzing the pixel sets to distinguish the subject from his/her surroundings (i.e., in a crowd) and determine movement of the subject and the current orientation of the UAV to the subject. The UAV may then change its heading, velocity, or position based on any difference between the current orientation and the desired or predetermined orientation between the UAV and the subject.
Abstract:
The invention relates to a surface identification device for the movement of a vehicle at a distance from that surface, the device comprising a detection head, the head including at least one sensor of a property depending on the distance of the center of the head from the surface, each sensor covering a detection zone centered on a line of sight, an orientation system for the detection zone of each sensor, and a controller processing the signals from each sensor and controlling the system based on said signals. The controller estimates the direction of the perpendicular to the surface, and uses said system to rotate the line of sight of each sensor in a separate direction by a reorientation angle of the direction of said perpendicular.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
In one example, an unmanned aerial vehicle includes a fuselage and a lift assembly. The lift assembly is selected from a plurality of lift assemblies, each of the plurality of lift assemblies having a different flight modality. The fuselage includes a mounting portion configured to mount with any of the plurality of lift assemblies.
Abstract:
The delivery of goods to a customer comprises a substantial portion of human activity. To correct address errors and/or to more precisely locate delivery locations, systems are provided to assist human, human operated vehicle, or autonomous vehicles to locate a delivery point. Often the location of a delivery point is inaccurate or imprecise. GPS and other coordinate systems often fail or are imprecise without an unobstructed view of the sky. Even with coordinates available, the delivery point may be different from the coordinates or, more commonly, coordinates that are different from some standard point within a postal address associated with the coordinates. Providing a delivery system that utilizes a broadcasted identifier, such as an identifier associated with the order of the item, the delivery of the item may be made proximate to the source of the broadcasted identifier or further refined using the broadcasted identifier as a reference.
Abstract:
This disclosure is directed to monitoring a noise signature of an unmanned aerial vehicle (UAV) and varying the speed of the motors of the UAV to reduce unwanted sound (i.e., noise) of the UAV based on the noise signature. The noise signature of the UAV may be measured by an audio sensor of a vibration sensor, and feedback may be provided to the UAV. The UAV may generate noise during flight, which may include a number of noise components such as tonal noise (e.g., a whining noise such as a whistle of a kettle at full boil) and broadband noise (e.g., a complex mixture of sounds of different frequencies, such as the sound of ocean surf). By measuring the noise signature of the UAV, and varying the motor revolutions per minute (RPM) during flight operations, the UAV may reduce tonal components of the UAV noise signature.
Abstract:
Systems and methods for launching and recovering moving objects with a pin array chamber are disclosed herein. In one embodiment of the disclosure, a pin array chamber system releases and captures an unmanned aerial vehicle (UAV) while airborne. The host aircraft has an in slip-stream chamber where two opposing plates of pin arrays exert a clamping force as pins extend onto the UAV to capture or release. As the pins are retracted from a captive UAV, thereby releasing a clamping force, the UAV continues with free-flight under its own power. In reverse, the UAV using precision relative navigation moves into the pin array chamber system under its own power in free-flight, and is then captured by the extensions of the pins with a clamping force. The pin array chamber system can also be used for ground systems, naval systems, space systems and microscopic systems.