Abstract:
The present disclosure provides a plurality of glass bubbles having an average true density of up to about 0.55 grams per cubic centimeter and a size distribution including a median size in a range from about 15 micrometers to 40 micrometers. A hydrostatic pressure at which ten percent by volume of the plurality of glass bubbles collapses is at least about 100 megapascals. In some embodiments, the plurality of glass bubbles is a graded fraction preparable by classifying a second plurality of glass bubbles, wherein the second plurality of glass bubbles has a higher percentage of glass bubbles with a size of up to ten micrometers than the first plurality of glass bubbles. Composites including the plurality of glass bubbles are also disclosed.
Abstract:
A one- or two-component silicone formulation, preferably an RTV silicone formulation, is described that has: a) at least one poly(diorganosiloxane), b) at least one first filler having an average particle size D50 less than or equal to 0.1 μm, c) at least one second filler having an average particle size D50 in the range of greater than 0.1 μm to 10 μm, and d) at least one cross-linking agent for the poly(diorganosiloxane). The constituents of the formulation can be present in one component, in the case of the one-component silicone formulation, and can be divided into two components A and B, in the case of the two-component silicone formulation. The silicone formulation is suitable in particular as an elastic adhesive for structural adhesive attachment, in particular in the facade, insulated glass, window construction, automotive, solar and construction fields. The silicone formulations have a high degree of green strength and are extraordinarily weather-resistant in the cured state.
Abstract:
A hard coating film that is curled to a height of less than 20 mm and has a pencil hardness of 3H or harder, the hard coating film including a hard coating agent that includes a hyperbranched (meth)acrylate oligomer having about 50 to about 200 (meth)acrylate groups, reactive nanoparticles, and a polyfunctional monomer.
Abstract:
A thermoplastic resin composition comprises (A) about 30 to about 50% by weight of a thermoplastic resin, and (B) about 50 to about 70% by weight of a spherical magnesium oxide, wherein the thermal diffusivity of the thermoplastic resin composition in the horizontal or vertical direction is about 0.065 to about 0.20 cm2/sec and the ratio of thermal diffusivity of the horizontal direction:vertical direction is about 1:0.5 to about 1:1. A thermoplastic resin composition according to a second embodiment comprises (A) about 30 to about 50% by weight of a thermoplastic resin, and (B) about 50 to about 70% by weight of a spherical magnesium oxide, wherein the spherical magnesium oxide is treated on its surface with a silane compound.
Abstract:
The present invention relates to a method of preparing a hard coating film, and, more particularly, to a method of preparing a hard coating film having high hardness. According to this method, a hard coating film having high hardness, which is not easily curled, can be easily prepared.
Abstract:
Fast cure resin system comprise semisolid epoxy resins and finely divided curatives of particle size less than 25 microns. The resins are dry to the touch, can be readily combined with fibrous reinforcement to provide prepregs which can be rapidly cured in a short moulding cycle.
Abstract:
An artificial marble includes unsaturated polyester resin (A), compound including silica (B), and luminescent pigment (C). An artificial marble according to a second embodiment includes about 70 to about 95% by weight of a non-luminescent base material (I) comprising unsaturated polyester resin (A), compound including silica (B), and organic/inorganic pigment (C) and about 5 to about 30% by weight of a luminescent amorphous pattern part (II) comprising unsaturated polyester resin (A), compound including silica (B), and luminescent pigment (D). An artificial marble according to a third embodiment includes unsaturated polyester resin (A), compound including silica (B), and amorphous luminescent chip (C).
Abstract:
A low-wear fluoropolymer composite body comprises at least one fluoropolymer and additive particles dispersed therein. Also provided is a process for the fabrication of such a fluoropolymer composite body. The composite body exhibits a low wear rate for sliding motion against a hard counterface, and may be formulated with either melt-processible or non-melt-processible fluoropolymers.
Abstract:
Variations of this invention provide durable, impact-resistant structural coatings that have both dewetting and anti-icing properties. The coatings in some embodiments possess a self-similar structure that combines a low-cost matrix with two feature sizes that are tuned to affect the wetting of water and freezing of water on the surface. Dewetting and anti-icing performance is simultaneously achieved in a structural coating comprising multiple layers, wherein each layer includes (a) a continuous matrix; (b) discrete templates dispersed that promote surface roughness to inhibit wetting of water; and (c) nanoparticles that inhibit heterogeneous nucleation of water. These structural coatings utilize low-cost, lightweight, and environmentally benign materials that can be rapidly sprayed over large areas using convenient coating processes. The presence of multiple layers means that if the surface is damaged during use, freshly exposed surface will expose a coating identical to that which was removed, for extended lifetime.
Abstract:
Fibre-matrix material curable thermally by radical polymerization, comprising (A) a polymeric matrix curable thermally by radical polymerization, (B) at least one kind of reinforcing fibres and (C) at least one particulate initiator of the radical polymerization, having an average particle size of 5 nm to 500 μm, as measured by static light scattering, and selected from the group consisting of benzpinacol and substituted benzpinacols; processes for producing it, and its use for producing fibre-reinforced thermoset mouldings.