Abstract:
The present disclosure provides tunable catalytic gasifier systems suitable for gasifying coal, biomass, and other fuel sources. The gasifier reactors of the disclosed systems may be heated by, e.g., a catalytic tube or other jacket that generates heat by catalytically combusting syngas, which syngas may be syngas produced by the gasifier system.
Abstract:
The present invention relates to a disposable module (100) for use in a device (300) for synthesizing radiopharmaceutical products starting with chemical reagents, said disposable module (100) comprising: a supporting plate (101) comprising rigid connection means (114) to at least one flask of chemical reagents (102, 103, 104, 105) in solution in a solvent, and a reactor (106); interface means (115) with a fixed module of said synthesis device (300), in contact with or integrated into said supporting plate (101), said interface means comprising at least one valve (V1-V8) and/or at least one fluid inlet (E1, E2) and/or at least one fluid outlet (O1, O2, O3); at least one conduit (1-20) connected to said at least one valve (V1-V8) or to said at least one fluid inlet (E1, E2) or to said at least one fluid outlet (O1, O2, O3), characterized in that at least one of said conduits (1-20) is integrated into the body of the disposable module (100).
Abstract:
A system for mixing ortho-xylene with an oxygen-containing gas such as air comprises an evaporator vessel fed with the gas and having a lance projecting into the gas. The lance is provided with a metal spray nozzle for injecting droplets of hot liquid ortho-xylene into the gas stream, concurrently with the direction of flow of the gas. The metal at the surface of the spray nozzle, that in use is in contact with the liquid ortho-xylene, has a high surface hardness to resist erosion, particularly by cavitation. The system is useful in the production of phthalic anhydride by the oxidation of ortho-xylene with air, whereby the risk for deflagrations is reduced. A soft metal seal is the preferred gasket between the spray nozzle and the lance.
Abstract:
Systems for loading catalyst and/or additives into a fluidized catalytic cracking unit are disclosed. Methods of making and using the systems are also disclosed.
Abstract:
Injection nozzles for use in a gas distribution device are disclosed. In one aspect, the injection nozzle may include: a tube having a fluid inlet and a fluid outlet; wherein the inlet comprises a plurality of flow restriction orifices. In another aspect, embodiments disclosed herein relate to an injection nozzle for use in a gas distribution device, the injection nozzle including: a tube having a fluid inlet and a fluid outlet; wherein the fluid inlet comprises an annular orifice surrounding a flow restriction device. Injection nozzles according to embodiments disclosed herein may be disposed in a gas distribution manifold used in a vessel, for example, for conducting polymerization reactions, spent catalyst regeneration, and coal gasification, among others.
Abstract:
Methods and systems for on-site, continuous generation of peracid chemistry, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions, are disclosed. In particular, an adjustable biocide formulator or generator system is designed for on-site generation of peroxycarboxylic acids and peroxycarboxylic acid forming compositions from sugar esters. Methods of using the in situ generated peroxycarboxylic acids and peroxycarboxylic acid forming compositions are also disclosed.
Abstract:
An apparatus, system, and method are disclosed for capturing electrical energy from a process designed for producing hydrogen. An electrode is placed within a stream of liquid alkali metal that flows through a titration module and interacts with water to produce, among other byproducts, hydrogen. Another electrode is placed within a reaction chamber that houses the water. The electrodes can then be coupled to a terminal, and during the hydrogen generation process (when the liquid alkali metal and water interact) the stream of liquid alkali metal acts as an anode and the electrode in the water as a cathode. Current flows, and energy is captured and made available as electrical energy at the terminal, which can be connected to electrical loads. The terminal may be connected with the terminal of a fuel cell that is consuming the hydrogen that is being produced, thus providing additional voltage and/or current.
Abstract:
This application provides a process unit for the production of alkylate gasoline, comprising: a) a nozzle having an orifice that dispenses one or more recirculated streams comprising ionic liquid catalyst into a chamber in the nozzle, b) a conduit for introducing a hydrocarbon feed stream comprising an olefin to the orifice at a close distance from the orifice; and c) a throat connecting the chamber in the nozzle to an alkylation zone. The process unit can have multiple Venturi nozzles.
Abstract:
A resin production apparatus of the present invention includes: a reactor vessel having a vessel main body which polymerizes an ingredient to produce a thermoplastic synthetic resin which solidifies at room temperature and storing the synthetic resin in the molten state, an output mechanism disposed at a bottom part of the vessel main body, which outputs the synthetic resin in the molten state, and a temperature adjustment mechanism which adjusts temperatures of the vessel main body and the output mechanism so as to maintain the molten state of the synthetic resin; a cooling mechanism arranged below the reactor vessel, which continuously cools and solidifies the synthetic resin output from the output mechanism; and a crushing mechanism which crushes the synthetic resin fed out from the cooling mechanism.
Abstract:
Systems, apparatus, and methods for distributing a mixed phase fluid to a monolith catalyst bed within a reactor, wherein a mixed phase fluid may be generated by a nozzle tray comprising a plurality of nozzles, the mixed phase fluid may be distributed by the nozzles to a mixed phase distributor system, and the mixed phase fluid may be further distributed by the mixed phase distributor system to a plurality of monolith channels within the reactor.