Abstract:
Systems and methods for delivering active ingredients, such as pharmaceutically active ingredients, to substrates are described herein. The active ingredients are delivered as fluids to a fluid-dispensing device for the creation of one or more drops for deposition onto substrates such as for the creation of microdoses. The invention further includes microdoses made by such processes.
Abstract:
An oxidation-reduction desulfurization system includes a reactor vessel with sour gas inlet at the bottom and a gas outlet at the top. A primary stage phase separator includes a vertically-oriented pipe with an inlet located inside the reactor vessel. The ratio of the reactor vessel diameter to the pipe inlet diameter is in a range of 2:1 to 5:1. Surface foam and non-gaseous multi-phase mixture including emulsion flow into a partially gas-filled upper section of the vertically-oriented pipe and freefall to a lower level, thereby facilitating mechanical breaking of the foam and the emulsion. A secondary stage phase separator connected to the gas outlet separates non-gaseous surge from sweet gas. Valves and a controller automatically maintain target levels of the non-gaseous multi-phase mixture and non-gaseous surge.
Abstract:
The invention provides a built-in micro-interface oxidation system for preparing terephthalic acid from p-xylene. The oxidation system includes a first reactor, a rectifying tower and a second reactor which are sequentially connected. A first outlet is disposed on a side wall of the first reactor; a first inlet is disposed on a side wall of the second reactor; a material inlet is disposed on a side wall of the rectifying tower; and a material outlet is disposed at a bottom of the rectifying tower. The first outlet is connected with the material inlet of the rectifying tower; the first inlet is connected with the material outlet of the rectifying tower. Micro-interface units are arranged in the first reactor and the second reactor for dispersing and crushing air into bubbles. Through disposing micro-interface units in reactors, problems of high energy consumption, high raw material consumption and low reaction efficiency are solved.
Abstract:
This disclosure relates to systems and processes for cooling polymer product mixtures manufactured at high pressure. The processes of the invention involve cooling and then subsequently reducing the pressure of the product mixture from the reactor. In the systems of the invention, a product cooler is located downstream of the high pressure reactor and upstream of a high pressure let down valve.
Abstract:
Provided herein is a unidirectional blow down system for a high-pressure tubular reactor with a hyper that minimizes the tube wall metal temperature during a decomposition event wherein the system prevents the reactor walls from reaching a temperature capable of causing the tube metal to austenize. Also provided are methods of designing and methods of operating a unidirectional blowdown system.
Abstract:
Systems and processes for rapidly depressurizing a reactor system are disclosed. The systems and processes are particularly useful in the high pressure polymerization of ethylene.
Abstract:
A hydrocarbon-in-water purification system includes a high capacity hydrocarbon absorber stage having a high capacity hydrocarbon absorber material and an inlet configured to receive a hydrocarbon-in-water dispersion from a fuel system. A polishing hydrocarbon absorber stage is in liquid communication and downstream of the high capacity hydrocarbon absorber stage including polishing activated carbon. The high capacity hydrocarbon absorber material has a greater saturation capacity than the polishing activated carbon and the polishing activated carbon has a greater polishing capacity than the high capacity hydrocarbon absorber material. A method for controlling and managing the evacuation of water from the hydrocarbon-in-water purification system includes tracking the purification state of water volumes and the bed loading states of purification beds defined in the water filter.
Abstract:
An improved method of deprotection in solid phase peptide synthesis is disclosed. In particular the deprotecting composition is added in high concentration and small volume to the mixture of the coupling solution, the growing peptide chain, and any excess activated acid from the preceding coupling cycle, and without any draining step between the coupling step of the previous cycle and the addition of the deprotection composition for the successive cycle. Thereafter, the ambient pressure in the vessel is reduced with a vacuum pull to remove the deprotecting composition without any draining step and without otherwise adversely affecting the remaining materials in the vessel or causing problems in subsequent steps in the SPPS cycle.
Abstract:
An assembly (10) for reducing pressure of slurry exiting an outlet pipe (15) of a supercritical reactor (116), the assembly (10) including a sealed collection vessel (12) and an orifice assembly (14) forming an inlet of the collection vessel (12), wherein the orifice assembly (14) comprises a plurality of orifices (17 to 20) for parallel connection with the reactor outlet pipe (15) such that flow from the outlet pipe (15) can be directed to any one of the orifices (17 to 20).
Abstract:
A resin production apparatus of the present invention includes: a reactor vessel having a vessel main body which polymerizes an ingredient to produce a thermoplastic synthetic resin which solidifies at room temperature and storing the synthetic resin in the molten state, an output mechanism disposed at a bottom part of the vessel main body, which outputs the synthetic resin in the molten state, and a temperature adjustment mechanism which adjusts temperatures of the vessel main body and the output mechanism so as to maintain the molten state of the synthetic resin; a cooling mechanism arranged below the reactor vessel, which continuously cools and solidifies the synthetic resin output from the output mechanism; and a crushing mechanism which crushes the synthetic resin fed out from the cooling mechanism.