Abstract:
A pad particularly adapted for surface cleaning. The pad includes an absorbent core having the ability to absorb and retain liquid material, and a liner layer in contact with and covering at least one side of the absorbent core. The liner layer has the ability to retain and wick liquid material through the liner layer. Cleaning apparatus containing such pads and methods of using such pads are also described.
Abstract:
An automatic mopping device with a driving worm arranged transversely includes an upper covering plate, an outer shell, a transmission member, an electrical component, a bottom cover, a chassis and a mopping ring assembly, and further includes a gear ring securing turntable, a mounting base and a motor cover. The overall height of the mopping device is between 60-64 mm, and the transmission member includes 2 wheels whose width is between 8-15 mm. The transmission member further comprises a perpendicularly arranged worm A and a horizontally arranged worm wheel B, a cylindrical spur gears A, B, C, a duplex gear and an internal gear ring. The duplex gear includes a cylindrical spur gear D and a planet gear. The worm wheel A and worm B are respectively meshed with the driving worm. The gear ring securing turntable is immovably connected to the internal gear ring, while the internal gear ring is meshed with the planet gear. The chassis is immovably connected to the gear ring securing turntable. The present invention has the following advantages: it is not that sensitive to the softness/hardness or the roughness/smoothness of the floor due to its relatively narrow wheels, thus avoiding breakdown, and its overall height is low enough to operate automatically underneath bed and table.
Abstract:
A cleaning robot (1) which is an autonomous mobile system performs coordinate conversion of three-dimensional coordinate data acquired by measurement in a distance image sensor (20) which is arranged in a frontward and obliquely downward direction to generate three-dimensional coordinate data of a floor surface reference. Labels are applied to this data by judging a level difference or an obstacle according to height from a floor surface (F) to create overhead view image data seen from directly above a cleaning robot main body. The overhead view image data is scanned, and only when the labels are arranged in a specific order, processing for substituting an unspecified area with a level difference is performed. Thereby, positional deviation of an edge of the level difference, which is caused by a blind spot, is corrected and a position of the level difference is able to be grasped accurately.
Abstract:
A robotic surface treatment apparatus treats corners of rooms more effectively through intricate guidance of the apparatus through inside and outside corners. In one aspect, contact and/or non-contact sensors provide information to one or more on-board processors on the apparatus to enable selective overriding of obstacle avoidance program code and allow the apparatus to get closer to walls to facilitate treatment. In another aspect, the sensors provide information to the on-board processors to control backup motion of the apparatus to cover previously-missed areas when turning corners. In yet another aspect, the apparatus is shaped to have its treatment mechanism positioned more closely to the front of the apparatus to enable treatment more closely to walls near corners. In one embodiment, the robotic surface treatment apparatus is a robotic vacuum. The vacuum may have its cleaning brush positioned near a flat front portion of the apparatus.
Abstract:
A positioning system comprises a sweeper and a positioning device arranged on a ceiling. The sweeper has a lighting component for emitting light. The positioning device at least has a height measuring unit and a plurality of light-sensitive units. The positioning device measures a vertical distance between the positioning device and a floor through the height measuring unit. The positioning device receives the light emitted from the emitting light of the sweeper through the light-sensitive units, and calculates an oblique distance between the positioning device and the sweeper based on different strengths of the light respectively received from each of the plurality of light-sensitive units. Therefore, the positioning device can calculates a parallel distance between the positioning device and the sweeper based on the vertical distance and the oblique distance, and further determines a related position of the sweeper opposite to the positioning device.
Abstract:
An obstacle detecting unit includes a reflective mirror formed to reflect light which is incident from a front area and a lower portion of the front area below a central portion of the reflective mirror; a catadioptric lens disposed coaxially with the reflective mirror in an upper portion of the reflective mirror, the catadioptric lens on which light incident from the front area and an upper portion of the front area; and an image forming module disposed coaxially with the reflective mirror below the reflective mirror, the image forming module on which the light reflected by the reflective mirror is incident, wherein a through hole is formed in the central portion of the reflective mirror, and the light coming out of the catadioptric lens passes through the through hole and then is incident on the image forming module.
Abstract:
An evacuation station includes a base and a canister removably attached to the base. The base includes a ramp having an inclined surface for receiving a robotic cleaner having a debris bin. The ramp defines an evacuation intake opening arranged to pneumatically interface with the debris bin. The base also includes a first conduit portion pneumatically connected to the evacuation intake opening, an air mover having an inlet and an exhaust, and a particle filter pneumatically the exhaust of the air mover. The canister includes a second conduit portion arranged to pneumatically interface with the first conduit portion to form a pneumatic debris intake conduit, an exhaust conduit arranged to pneumatically connect to the inlet of the air mover when the canister is attached to the base, and a separator in pneumatic communication with the second conduit portion.
Abstract:
A mobile robot configured to travel across a residential floor or other surface while cleaning the surface with a cleaning pad and cleaning solvent is disclosed. The robot includes a controller for managing the movement of the robot as well as the treatment of the surface with a cleaning solvent. The movement of the robot can be characterized by a class of trajectories that achieve effective cleaning. The trajectories include sequences of steps that are repeated, the sequences including forward and backward motion and optional left and right motion along arcuate paths.
Abstract:
A state detecting method applied to a mobile device includes: arranging a depth sensor at the bottom of the mobile device, obtaining a detection signal of the depth sensor, and determining if the mobile device is in a lifted state, a tilted state, or an edge-bordering state, based on the numerical value of the detection signal of the depth sensor. The lifted state is associated with the mobile device without contacting with a support surface. The tilted status is associated with one end of the mobile device contacting the support surface and the other end of the mobile device without contacting the support surface. The edge-bordering state is associated with the mobile device located at the edge of the support surface. Accordingly, when the mobile device is in any of the aforementioned states, an appropriate response can be implemented.
Abstract:
A mobile robotistic mopping machine is formed of a body frame, a mop cloth, a power device, and a control device. The power device includes two opposite wheels and two opposite motors connected with the respective wheels for driving the wheels to rotate to further enable the body frame via the wheels to make the mop cloth move forward for cleaning the ground. The control device is electrically connected with the motors for controlling the motors. When the body frame makes the mop cloth move forward for a predetermined distance, the control device can control and make one of the motors reversely rotate and meanwhile make the other keep normal rotation to further enable the body frame to make the mop cloth turn for a predetermined angle and then keep moving forward.