Abstract:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a lower wiring layer. The method further includes forming a layer. The method further includes forming a second sacrificial cavity layer over the first sacrificial layer and in contact with the layer. The method further includes forming a lid on the second sacrificial cavity layer. The method further includes forming at least one vent hole in the lid, exposing a portion of the second sacrificial cavity layer. The method further includes venting or stripping the second sacrificial cavity layer such that a top surface of the second sacrificial cavity layer is no longer touching a bottom surface of the lid, before venting or stripping the first sacrificial cavity layer thereby forming a first cavity and second cavity, respectively.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes layering metal and insulator materials on a sacrificial material formed on a substrate. The method further includes masking the layered metal and insulator materials. The method further includes forming an opening in the masking which overlaps with the sacrificial material. The method further includes etching the layered metal and insulator materials in a single etching process to form the beam structure, such that edges of the layered metal and insulator material are aligned. The method further includes forming a cavity about the beam structure through a venting.
Abstract:
Disclosed is a micro-electro-mechanical switch, including a substrate having a gate connection, a source connection, a drain connection and a switch structure, coupled to the substrate. The switch structure includes a beam member, an anchor and a hinge. The beam member having a length sufficient to overhang both the gate connection and the drain connection. The anchor coupling the switch structure to the substrate, the anchor having a width. The hinge coupling the beam member to the anchor at a respective position along the anchor's length, the hinge to flex in response to a charge differential established between the gate and the beam member. The switch structure having gaps between the substrate and the anchor in regions proximate to the hinges.
Abstract:
MEMS switches and methods of fabricating MEMS switches. The switch has a vertically oriented deflection electrode having a conductive layer supported by a supporting layer, at least one drive electrode, and a stationary electrode. An actuation voltage applied to the drive electrode causes the deflection electrode to be deflect laterally and contact the stationary electrode, which closes the switch. The deflection electrode is restored to a vertical position when the actuation voltage is removed, thereby opening the switch. The method of fabricating the MEMS switch includes depositing a conductive layer on mandrels to define vertical electrodes and then releasing the deflection electrode by removing the mandrel and layer end sections.
Abstract:
A process of forming a through-silicon via (TSV) in a die includes forming a movable member in the TSV that can be actuated or that can be a sensor. Action of the movable member in the TSV can result in a logic word being sent from the TSV die to a subsequent die. The TSV die may be embedded in a substrate. The TSV die may also be coupled to a subsequent die.
Abstract:
Integrated MEMS switches, design structures and methods of fabricating such switches are provided. The method includes forming at least one tab of sacrificial material on a side of a switching device which is embedded in the sacrificial material. The method further includes stripping the sacrificial material through at least one opening formed on the at least one tab which is on the side of the switching device, and sealing the at least one opening with a capping material.
Abstract:
A MEMS device comprises first and second opposing electrode arrangements (22,28), wherein the second electrode arrangement (28) is electrically movable to vary the electrode spacing between facing sides of the first and second electrode arrangements. At least one of the facing sides has a non-flat surface with at least one peak and at least one trough. The height of the peak and depth of the trough is between 0.01t and 0.1t where t is the thickness of the movable electrode.
Abstract:
A Micro-Electro-Mechanical System (MEMS). The MEMS includes a lower chamber with a wiring layer and an upper chamber which is connected to the lower chamber. A MEMS beam is suspended between the upper chamber and the lower chamber. A lid structure encloses the upper chamber, which is devoid of structures that interfere with a MEMS beam. The lid structure has a surface that is conformal to a sacrificial material vented from the upper chamber.
Abstract:
The present invention discloses a capacitive MEMS switch on top of a semiconductor substrate containing a CMOS driving circuitry. The capacitive MEMS switch disclosed includes: 1) a semiconductor substrate containing a driving circuitry inside, and first and second conductors as well as a bottom electrode on top; 2) a suspended composite beam above and anchored onto the semiconductor substrate, containing a top electrode aligned to the bottom electrode with a first vertical distance, a top conductor, capped by a dielectric layer, having a first and second contact tips aligned with the first and second bottom conductors with a second vertical distance differentially smaller than the first vertical distance. The electrostatic attraction generated between the top electrode and the bottom electrode pulls the first and second contact tips in physical contact with and electrically connects the first and second bottom conductors through the top conductor.
Abstract:
Disclosed is a micro-electro-mechanical switch, including a substrate having a gate connection, a source connection, a drain connection and a switch structure, coupled to the substrate. The switch structure includes a beam member, an anchor, an anchor beam interface and a hinge. The beam member having a length sufficient to overhang both the gate connection and the drain connection. The anchor coupling the switch structure to the substrate. The anchor beam interface coupling the anchor to the hinge. The hinge coupling the beam member to the anchor at a respective position along the anchor's length, the hinge to flex in response to a voltage differential established between the gate and the beam member. The switch structure having gaps between the substrate and the anchor in regions proximate to the hinges.