Abstract:
A thermally conductive silicone grease composition comprises: (A) an organopolysiloxane represented by the following general formula: wherein each R1 is independently selected from monovalent hydrocarbon groups, each X is independently selected from monovalent hydrocarbon groups or alkoxysilyl-containing groups of the following general formula: —R2—SiR1a(OR3)(3-a) wherein R1 is defined as above, R2 is an oxygen atom or an alkylene group, R3 is an alkyl group, a is an integer ranging from 0 to 2, m is an integer equal to or greater than 0, and n is an integer equal to or greater than 0; (B) a thermally conductive filler; and (C) an aluminum-based or titanium-based coupling agent. The composition exhibits excellent heat resistance and reduced oil bleeding.
Abstract:
An anti-seizure agent for hot steel working that exhibits excellent wettability and surface film-adherability comprises: an inorganic component (first component); sodium hydroxide (second component); water-soluble resins and/or water-soluble surfactants (third component); and water. With the mass of the sum of the first component, the second component, and the third component as 100 mass %, the anti-seizure agent contains: 96.5 mass % or more and 99.98 mass % or less of the first component; 0.01 mass % or more and 2.0 mass % or less of the second component; and 0.01 mass % or more and 1.5 mass % or less of the third component, and the inorganic component is one or more selected from a group consisting of Al2O3, SiO2, CaO, B2O3, K2O, and Na2O. A coating layer formed after application solidly adheres to the steel and does not come off in the environment of both cold and hot working.
Abstract translation:具有优异的润湿性和表面膜附着性的热钢加工用防咬住剂包括:无机成分(第一成分); 氢氧化钠(第二组分); 水溶性树脂和/或水溶性表面活性剂(第三组分); 和水。 以第一成分,第二成分和第三成分之和的质量为100质量%,防卡定剂含有:第一成分的96.5质量%以上且99.98质量%以下。 0.01质量%以上且2.0质量%以下的第二成分。 0.01质量%以上且1.5质量%以下,无机成分为选自Al 2 O 3,SiO 2,CaO,B 2 O 3,K 2 O,Na 2 O中的一种以上。 在施加后形成的涂层在冷和热加工的环境中牢固地粘附到钢上并且不脱落。
Abstract:
A tribo-system includes a metal substrate having a surfactant layer chemisorbed to a side thereof, a lubricant established on the metal substrate, and a plurality of nanoparticles dispersed in the lubricant. Each of the nanoparticles includes i) an inorganic core having a predetermined size and shape, and ii) a surfactant shell chemisorbed to a surface of the inorganic core, where the surfactant shell has a predetermined thickness. The adhesive force and energy between the metal substrate surface and the nanoparticles is higher than the adhesive force and energy between individual particles of the nanoparticles.
Abstract:
A combination nano and microparticle treatment for engines enhances fuel efficiency and life duration and reduces exhaust emissions. The nanoparticles are chosen from a class of hard materials, preferably alumina, silica, ceria, titania, diamond, cubic boron nitride, and molybdenum oxide. The microparticles are chosen from a class of materials of layered structures, preferably graphite, hexagonal boron nitride, magnesium silicates (talc) and molybdenum disulphide. The nano-micro combination can be chosen from the same materials. This group of materials includes zinc oxide, copper oxide, molybdenum oxide, graphite, talc, and hexagonal boron nitride. The ratio of nano to micro in the proposed combination varies with the engine characteristics and driving conditions. A laser synthesis method can be used to disperse nanoparticles in engine oil or other compatible medium. The nano and microparticle combination when used in engine oil can effect surface morphology changes such as smoothening and polishing of engine wear surfaces, improvement in coefficient of friction, and fuel efficiency enhancement up to 35% in a variety of vehicles (cars and trucks) under actual road conditions, and reduction in exhaust emissions up to 90%.
Abstract:
A threaded joint for steel pipes for use in an oil well which has improved galling resistance and which is protected from rusting comprises a pin and a box each having a contact surface including a threaded portion and an unthreaded metal contact portion. The contact surface of at least one of the pin and the box has a lower layer of a viscous liquid or semisolid lubricating coating comprising at least wax and a fatty acid alkaline earth metal salt and not containing a harmful heavy metal such as lead and an upper layer of a dry solid coating formed from an aqueous resin coating composition, an organic solvent type coating composition, or an ultraviolet curing coating composition.
Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D50) particle size which differs from the other average particle sizes by at least a factor of five. The thermally conductive greases of the invention exhibit desirable rheological behavior during installation/application and during use of devices involving these materials.
Abstract:
An electric submersible motor is provided that includes a plurality of rotors and bearings mounted on a shaft, and a stator external to said rotors. A running clearance is located between an inner diameter of the stator and external diameter of the rotors, and includes a lubricating oil that includes a base hydrocarbon oil and a plurality of nanoparticles. Also provided is an improved lubricant oil and method of preparation thereof are provided. The lubricant oil includes a hydrocarbon containing base oil and a plurality of nanoparticles. The nanoparticles may be present in an amount up to 30% by volume.
Abstract:
Antimicrobial compositions and methods are disclosed. The antimicrobial compositions are particularly useful in providing antimicrobial capability to a wide-range of medical devices. In one aspect, the invention relates to a mild solvent coating using acrylate-type mild solution coating. These compositions include rheological modifiers as necessary. The compositions also include antimicrobial agents, which may be selected from a wide array of agents. Representative antimicrobial agents include cetyl pyridium chloride, cetrimide, alexidine, chlorexidine diacetate, benzalkonium chloride, and o-phthalaldehyde. Additionally, the compositions comprise one or more suitable mild solvents, such as a low molecular weight alcohol, alkane, ketone, and combinations thereof.
Abstract:
Antimicrobial compositions and methods are disclosed. The antimicrobial compositions are particularly useful in providing antimicrobial capability to a wide-range of medical devices. In one aspect the invention relates a UV curable antimicrobial coating comprising a UV curable composition comprising an oligomer, a momoner, and a photoinitiator which are together capable of forming a UV curable polymer composition. The compositions include rheology modifiers as necessary. The compositions also include antimicrobial agents, which may be selected from a wide array of agents. Representative antimicrobial agents include cetyl pyridium chloride, cetrimide, alexidine, chlorexidine diacetate, benzalkonium chloride, and o-phthalaldehyde.
Abstract:
This invention relates to a lubricating composition comprising a major amount of an oil of lubricating viscosity with an iodine number less than about 9, (A) one or more antioxidant, and (B) from about 0.01% to about 3% by weight of at least one dispersant or detergent, wherein the total amount of antioxidant is at least about 2% by weight. The additives are useful act controlling oxidation of lubricants. Further, these lubricants have reduced viscosity increase caused by oxidation, while maintaining favorable carbon/varnish ratings.