Abstract:
A device for guiding a charged particle beam comprising a first superconducting nano-channel. In one embodiment, the device comprises a superconducting nano-channel consisting essentially of a superconducting material in the form of a tube having a proximal end, a distal end, and a bend disposed between said proximal end and said distal end. In another embodiment, the device is formed by a substrate, a first area of superconducting material coated on the substrate and having a first edge, a second area of superconducting material coated on the substrate and having a second edge, the first edge of the first area of superconducting material and the second edge of the second area of superconducting material are substantially parallel. In another embodiment, the device comprises a superconducting nano-channel formed by a plurality of nano-scale superconducting rods disposed around a central region.
Abstract:
A method for processing one-dimensional nano-materials includes the following steps: providing a substrate (11); forming one-dimensional nano-materials (12) on the substrate, the one-dimensional nano-materials being substantially parallel to each other and each being substantially perpendicular to the substrate, the one-dimensional nano-materials cooperatively defining a top surface distal from the substrate; and applying physical energy (14) by means of a high-energy pulse laser beam to the top surface of the one-dimensional nano-materials. The resulting one-dimensional nano-materials have sharp, tapered tips (15, 15null). Distances between adjacent tips are approximately uniform, and are relatively large. This reduces shielding between adjacent one-dimensional nano-materials. The tips also contribute to a decreased threshold voltage required for field emission by the one-dimensional nano-materials.
Abstract:
A field emission array adopting carbon nanotubes as an electron emitter source, wherein the array includes a rear substrate assembly including cathodes formed as stripes over a rear substrate and carbon nanotubes; a front substrate assembly including anodes formed as stripes over a front substrate with phosphors being deposited on the anodes, a plurality of openings separated by a distance corresponding to the distance between the anodes in a nonconductive plate, and gates formed as stripes perpendicular to the stripes of anodes on the nonconductive plate with a plurality of emitter openings corresponding to the plurality of openings. The nonconductive plate is supported and separated from the front substrate using spacers. The rear substrate assembly is combined with the front substrate assembly such that the carbon nanotubes on the cathodes project through the emitter openings.
Abstract:
Upon wet etching and thereby patterning carbon nanotubes (106) by a transfer method, a solution for dissolving a binder used in the transfer method as a solution used for the wet etching is used, and the carbon nanotubes (106) tangled with each other are rubbed off with a cloth-like substance (112) upon the wet etching. Furthermore, upon patterning the carbon nanotubes (106) using a dry etching method, a metal film or a film made of a substance resistant to damage upon the dry etching and causing no damage to the carbon nanotubes (106) when removed is used as a mask. A fine carbon nanotube pattern having an excellent flatness is formed.
Abstract:
An apparatus for producing an electron beam, containing a vacuum chamber, a source of electron beams within the vacuum chamber, and a device for focusing the electrons beams. An electron transparent window is formed at the end of the vacuum chamber; and the vacuum chamber has a volume of less than about 1 cubic millimeter and a pressure of less than 10−7 Torr. In one embodiment, the focusing device is located outside of the vacuum chamber.
Abstract:
A triode structure of a field emission display is manufactured with thick-film technology. The triode structure includes a cathode electrode layer that comprises a metallic catalyst. Isomeric carbon emitters can be grown on the cathode electrode layer by CVD process at a low temperature because of the metallic catalyst. Instead of mixing the metallic catalyst in the cathode electrode layer, a metallic catalyst layer can be formed on the cathode electrode layer to facilitate the growth of the isomeric carbon emitters. The combination of thick film technology and low temperature CVD process provide a low cost method for fabricating a large area field emission display with isomeric carbon emitters.
Abstract:
In this invention, protrusions are formed on a substrate such as silicon and quartz glass, and catalytic metal of transition element, such as nickel, iron and cobalt are coated on the substrate, and carbon nanotubes are grown by hot-filament chemical vapor deposition or microwave-plasma enhanced chemical vapor deposition under an application of negative voltage to the substrate. Where the substrate is heated. In these methods, carbon nanotubes can be selectively grown from the apex of protrusions. As a substrate, silicon probe for scanning probe microscopy (SPM) can be used. The carbon nanotube probe can be applied to high resolution SPM probe for imaging a precise topographic image.
Abstract:
A field-emission electron source element includes a cathode substrate, an insulating layer that is formed on the cathode substrate and has an opening, a lead electrode formed on the insulating layer, and an emitter formed in the opening. A surface layer of an electron emitting region of the emitter is doped with at least one reducing element selected from the group consisting of hydrogen and carbon monoxide. Further, an image display apparatus including the above-mentioned field-emission electron source element is provided. This makes it possible to obtain not only a stable field-emission electron source element that does not cause a current drop even after a high current density operation for a long time but also a high-performance image display apparatus that can maintain a stable display performance over a long period of time.
Abstract:
The present invention is directed towards metallized carbon nanotubes, methods for making metallized carbon nanotubes using an electroless plating technique, methods for dispensing metallized carbon nanotubes onto a substrate. The present invention is also directed towards cold cathode field emitting materials comprising metallized carbon nanotubes, and methods of using metallized carbon nanotubes as cold cathode field emitters.
Abstract:
A field emission cathode consisting of atomic-scale composite material comprising three atomic networks is proposed. The first and the second atomic networks penetrate into each other and form carbon-based stabilized dielectric medium and the third atomic network is a conductive network of metallic atoms. The atomic scale composite material may also contain conductive nano-crystals immersed into the carbon-based stabilized dielectric medium. The atomic-scale conductive network and nano-crystals reach the film surface and film edge forming nanometer scale field emission sites. They may be partially exposed by etching the other components of the cathode material thereby forming atomic-scale and/or nano-scale field emission metallic tips. The field emission cathode can be used as an efficient cold cathode in a variety of electronic devices, such as flat panel field emission displays, microwave diodes, triodes and more complex devices.