Abstract:
There is disclosed a drone including a main body comprising a motor, a shaft inserted in the main body vertically, a wing unit rotatable on the shaft by a power generated from the motor, the wing unit comprising a propeller unfolded horizontally and folded vertically, wherein the motor comprises a first motor and a second motor, and the shaft comprises an upper shaft inserted in the main body from a top vertically and a lower shaft inserted in the main body from a bottom vertically, and the wing unit comprises a first wing unit rotated on the upper shaft in a first direction by a power generated from the first motor, and a second wing unit rotated on the lower shaft in a second direction, which is the reverse of the first direction, by a power generated from the second motor.
Abstract:
A surveillance system includes a multi-propeller aircraft having a main propeller and a plurality of wing unit propellers; a housing that houses the main propeller and the wing unit propellers; an optical video camera; an ultra-wideband (UWB) radar imaging system; a control system for controlling flight of the multi-propeller aircraft from a remote location; and a telemetry system for providing information from the optical camera and the ultra-wideband (UWB) radar imaging system to a remote location.
Abstract:
This invention relates to a multi-rotor aircraft frame structure, which is mainly the use of stainless steel tubes and engineering plastics has the rigidity and toughness, directly to the stainless steel tubes symmetrical inserted nailed in plastic sheet to constitute the main frame structure, and by connecting plurality support blocks and plurality support rods to construct a kind of peripheral support structure to obtain sufficient structural strength, thereby to constructing a light weight and low cost and practicality high-performance multi-rotor aircraft frame.
Abstract:
Described is an airborne fulfillment center (“AFC”) and the use of unmanned aerial vehicles (“UAV”) to deliver items from the AFC to users. For example, the AFC may be an airship that remains at a high altitude (e.g., 45,000 feet) and UAVs with ordered items may be deployed from the AFC to deliver ordered items to user designated delivery locations. As the UAVs descend, they can navigate horizontally toward a user specified delivery location using little to no power, other than to stabilize the UAV and/or guide the direction of descent. Shuttles (smaller airships) may be used to replenish the AFC with inventory, UAVs, supplies, fuel, etc. Likewise, the shuttles may be utilized to transport workers to and from the AFC.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed that includes a retractable payload delivery system. The payload delivery system can lower a payload to the ground using a delivery device that secures the payload during descent and releases the payload upon reaching the ground. The delivery device can include a channel in which a payload mount attachment for a payload can be inserted. The payload mount attachment can include an aperture for receiving a retaining rod to secure the attachment, and thus the payload, to the delivery device. The retaining rod can assume either an engaged position, in which a portion of the retaining rod engages the payload mount attachment while the payload mount attachment is inserted in the channel, or a disengaged position, in which the retaining rod does not engage the payload mount attachment.
Abstract:
Various embodiments of the present disclosure are directed to an Unmanned Aerial System (UAS) for applying a liquid to a surface. According to various embodiments, the UAS includes an Unmanned Aerial Vehicle (UAV) including flight control mechanisms. The UAV is configured to receive first control signals and to adjust an operational configuration of the flight control mechanisms in response to the first control signals. The UAS further includes a delivery assembly coupled to the UAV, where the delivery assembly is configured to receive second control signals and to apply the liquid to the surface located proximately to the UAV in response to the second control signals. The UAS further includes a control unit coupled to the UAV and the delivery assembly, the control unit configured to transmit the first and second control signals to the UAV and the delivery assembly, respectively.
Abstract:
An impact protection apparatus is provided, comprising a gas container configured to hold a compressed gas and an inflatable member configured to be inflated by the gas and function as an airbag of a movable object, such as an aerial vehicle. A valve controls flow of gas from the container to the inflatable member in response to a signal from a valve controller. The valve and valve controller are powered by an independent power source than one or more other systems of the movable object. A safety mechanism may also be provided that, unless deactivated, prevents inflation of the inflatable member.
Abstract:
In an approach to providing navigation assistance, one or more computer processors receive a request for navigation assistance to a destination from a first user. The one or more computer processors dispatch a navigation assistance UAV to the first user. The one or more computer processors determine a route for the first user to follow to the destination. The one or more computer processors provide navigation assistance for the route to the first user using the navigation assistance UAV.
Abstract:
A rotary wing aircraft apparatus has arms extending from a body, and a rotor assembly attached to an end of each arm. Each rotor assembly has a rotor blade releasably attached by a lock mechanism. A clockwise rotor blade is releasably attached to a first rotor assembly by engagement in a clockwise lock mechanism, and a counterclockwise rotor blade is releasably attached to a second rotor assembly by engagement in a counterclockwise lock mechanism. The clockwise rotor blade is engageable only with the clockwise lock mechanism and the counterclockwise rotor blade is engageable only with the counterclockwise lock mechanism and cannot be engaged in the clockwise lock mechanism. A leg extends down from each rotor assembly to support the apparatus on the ground.
Abstract:
Systems and methods are provided for swapping the battery on an unmanned aerial vehicle (UAV) while providing continuous power to at least one system on the UAV. The UAV may be able to identify and land on an energy provision station autonomously. The UAV may take off and/or land on the energy provision station. The UAV may communicate with the energy provision station. The energy provision station may store and charge batteries for use on a UAV. The UAV and/or the energy provision station may have a backup energy source to provide continuous power to the UAV.