Abstract:
A microchip has a resin substrate, which is provided with a first surface whereupon a channel groove is formed and a second surface on the opposite side to the first surface, and the microchip also has a resin film bonded on the first surface. A projection area is larger than the area of the first surface of the resin substrate when the resin substrate is viewed from a direction orthogonally intersecting with the first surface. Thus, warpage of the microchip can be suppressed at the time of thermally bonding the resin substrate and the resin film by a roller.
Abstract:
It is made possible to provide a highly integrated, thin apparatus can be obtained, even if the apparatus contains MEMS devices and semiconductor devices. A semiconductor apparatus includes: a first chip comprising a MEMS device formed therein; a second chip comprising a semiconductor device formed therein; and an adhesive layer bonding a side face of the first chip to a side face of the second chip, and having a lower Young's modulus than the material of the first and second chips.
Abstract:
A method of bonding includes using a bonding layer having a fluorinated oxide. Fluorine may be introduced into the bonding layer by exposure to a fluorine-containing solution, vapor or gas or by implantation. The bonding layer may also be formed using a method where fluorine is introduced into the layer during its formation. The surface of the bonding layer is terminated with a desired species, preferably an NH2 species. This may be accomplished by exposing the bonding layer to an NH4OH solution. High bonding strength is obtained at room temperature. The method may also include bonding two bonding layers together and creating a fluorine distribution having a peak in the vicinity of the interface between the bonding layers. One of the bonding layers may include two oxide layers formed on each other. The fluorine concentration may also have a second peak at the interface between the two oxide layers.
Abstract:
Embodiments of an implantable device for delivering a therapeutic agent to a patient include a reservoir configured to contain a liquid comprising the therapeutic agent, and a cannula in fluid communication with the reservoir. The cannula is shaped to facilitate insertion thereof into a patient's eyeball.
Abstract:
A micromachined sensor having a capacitive sensing structure. The sensor includes a first substrate with first and second conductive layers separated by a buried insulator layer, and a member defined by the first and second conductive layers and the buried insulator layer. A first set of elements defined with the first conductive layer is connected to the member and includes first and second elements that are electrically isolated from each other by the buried insulator layer. A second set of elements is defined with the first conductive layer and capacitively coupled with the first set of elements. A second substrate is bonded to the first substrate so that the member and the first set of elements are movably supported above the second substrate. The second set of elements is anchored to the second substrate, and the first and second sets of elements are physically interconnected through the second substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A reconstituted electronic device including: a first face and a second face; a plurality of individual chips placed perpendicular to the faces, each individual chip carrying, on one of its surfaces, at least one component, tracks, and a connection mechanism that are flush with one or other of the faces of the reconstituted electronic device; and an encapsulant that encapsulates the individual chips.
Abstract:
A micromachined sensor and a process for fabrication and vertical integration of a sensor and circuitry at wafer-level. The process entails processing a first wafer to incompletely define a sensing structure in a first surface thereof, processing a second wafer to define circuitry on a surface thereof, bonding the first and second wafers together, and then etching the first wafer to complete the sensing structure, including the release of a member relative to the second wafer. The first wafer is preferably a silicon-on-insulator (SOI) wafer, and the sensing structure preferably includes a member containing conductive and insulator layers of the SOI wafer. Sets of capacitively coupled elements are preferably formed from a first of the conductive layers to define a symmetric capacitive full-bridge structure.
Abstract:
The invention relates to a method for producing a semiconductor structure comprising a superficial layer, at least one embedded layer, and a support, which method comprises: a step of forming, on a first support, patterns in a first material, a step of forming a semiconductor layer, between and on said patterns, a step of assembling said semiconductor layer with a second support.
Abstract:
A method for forming a vibrating micromechanical structure having a single crystal silicon (SCS) micromechanical resonator formed using a two-wafer process, including either a Silicon-on-insulator (SOI) or insulating base and resonator wafers, wherein resonator anchors, capacitive air gap, isolation trenches, and alignment marks are micromachined in an active layer of the base wafer; the active layer of the resonator wafer is bonded directly to the active layer of the base wafer; the handle and dielectric layers of the resonator wafer are removed; windows are opened in the active layer of the resonator wafer; masking the active layer of the resonator wafer with photoresist; a SCS resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist is subsequently dry stripped. A patterned SCS cover is bonded to the resonator wafer resulting in hermetically sealed chip scale wafer level vacuum packaged devices.