Abstract:
Field emission characteristics of carbon films are improved by changing the conditions of the growth of the films, by adding nitrogen, or substitutes to the nitrogen for hydrogen, in the carbon film growth process. Resulting field emission cathodes exhibit better field emission characteristics because of the increased concentration of nitrogen within the film.
Abstract:
A field emission type cold cathode device comprises a substrate, and a metal plating layer formed on the substrate, the metal plating layer contains at least one carbon structure selected from a group of fullerenes and carbon nanotubes, the carbon structure is stuck out from the metal plating layer and a part of the carbon structure is buried in the metal plating layer.
Abstract:
An electron emitting device includes at least a first electrode and an electron emitting section provided on the first electrode. The electron emitting section is formed of a particle or an aggregate of particles. The particle contains a carbon material having a carbon six-membered ring structure. The carbon material having a carbon six-membered ring structure contains, for example, graphite or a carbon nanotube as a main component.
Abstract:
One or more highly-oriented, multi-walled carbon nanotubes are grown on an outer surface of a substrate initially disposed with a catalyst film or catalyst nano-dot by plasma enhanced hot filament chemical vapor deposition of a carbon source gas and a catalyst gas at temperatures between 300null C. and 3000null C. The carbon nanotubes range from 4 to 500 nm in diameter and 0.1 to 50 nullm in length depending on growth conditions. Carbon nanotube density can exceed 104 nanotubes/mm2. Acetylene is used as the carbon source gas, and ammonia is used as the catalyst gas. Plasma intensity, carbon source gas to catalyst gas ratio and their flow rates, catalyst film thickness, and temperature of chemical vapor deposition affect the lengths, diameters, density, and uniformity of the carbon nanotubes. The carbon nanotubes of the present invention are useful in electrochemical applications as well as in electron emission, structural composite, material storage, and microelectrode applications.
Abstract translation:一个或多个高取向多壁碳纳米管通过碳源气体和催化剂气体的等离子体增强热丝化学气相沉积在初始设置有催化剂膜或催化剂纳米点的基板的外表面上生长 温度在300℃至3000℃之间。根据生长条件,碳纳米管的直径范围为4至500纳米,长度为0.1-50微米。 碳纳米管密度可以超过10 4纳米管/ mm 2。 使用乙炔作为碳源气体,氨用作催化剂气体。 等离子体强度,碳源气体与催化剂气体比及其流速,催化剂膜厚度和化学气相沉积温度影响碳纳米管的长度,直径,密度和均匀性。 本发明的碳纳米管可用于电化学应用以及电子发射,结构复合材料,材料储存和微电极应用。
Abstract:
The present invention provides a cold cathode electron source and a method for manufacturing the cold cathode electron source. The cold cathode electron source includes a substrate on which are deposited a catalyst metal layer, an insulation layer, and a gate metal layer; a cavity section formed through the catalyst metal layer, the insulation layer, and the gate metal layer; and an emitter realized through a plurality of carbon nanotubes, which are grown from walls of the catalyst metal layer exposed in the cavity section and which have long axes parallel to the substrate. The method includes depositing a catalyst metal layer, an insulation layer, and a gate metal layer on a substrate; forming a cavity section by removing a portion of the gate metal layer, the insulation layer, and the catalyst metal layer using a photolithography process; and forming an emitter by mounting the substrate on a chemical vapor deposition reactor and growing carbon nanotubes in a low temperature atmosphere of 500null800 degrees Celsius (null C.).
Abstract:
An apparatus and method which enhances the electron emission efficiency in a field emission apparatus having carbon nanotube(s) in a cathode as an electron emitting material. In a field emission apparatus having carbonanotube(s) as an electron emitting material on a cathode 2, the electron emission efficiency from the carbon nanotube(s) 1 is enhanced by irradiating carbon nanotubes 1 with infrared light.
Abstract:
A method for fabricating the cathode plate of a carbon nano tube field emission display uses a photoconductive paste and etchable dielectric material to fabricate the cathode plate. The method combines photolithography process and etching process to fabricate a cathode electrode layer, a dielectric layer, a gate layer, and a carbon nano tube emission layer. Packing this cathode plate structure with a conventional anode plate together can form a carbon nano tube field emission array. The distribution of the electric field is uniform and the alignment at post-process is made easy.
Abstract:
In a carbon nanotube for an electron emission source, the carbon nanotube has a cylindrical shape formed from a plurality of graphite layers. The graphite layer is made of a six-membered ring of carbon. The outer diameter of the cylinder is 0.6 to 100 nm. The diameter of a hollow portion formed along the axis of the cylinder is 0.1 to 0.9 times the outer diameter of the cylinder. The hollow portion has an open distal end portion.
Abstract:
Provided are a composite for paste including carbon nanotubes (CNTs), an electron emitting device using the same, and a manufacturing method thereof. The provided composite for paste includes 5 to 40 parts by weight of CNTs, 5 to 50 parts by weight of alkali metal silicate, and 1 to 20 parts by weight of a binder. The provided electron emitting device includes electron emitting tips, which are located on cathode electrodes in wells and formed of the composite for paste including 5 to 40 parts by weight of CNTs, 5 to 50 parts by weight of alkali metal silicate, and 1 to 20 parts by weight of a binder. The electron emitting device has excellent stability and durability and uniformly emits electrons from a large area, thereby improving the overall performance of an apparatus using the electron emitting device.
Abstract:
A method of constructing nanotube matrix material in a controlled manner wherein, a nanotube fragment having at least two potential energy-binding surfaces including two distinct levels of binding potential energy of H-bonding and a second lower binding potential energy of covalent bonding, are used for binding corresponding nanotube fragments. The method comprises the steps of: (a) bringing a solution of nanotube fragments together; (b) heating the solution to a temperature to disrupt the H-bonding but insufficient to denature the covalent bonding; (c) agitating the solution and slowly reducing the temperature (annealing) to a temperature where the H-bondings are stable, producing an optimal configuration; (d) adding a reagent to the solution to cause ring closure; and (e) introducing a catalytic element for purification and dehydrogenation of the nanotube matrix material formed.