Abstract:
Methods and systems for I/O mismatch calibration and compensation for wideband communication receivers may include receiving a radio frequency (RF) signal in a receiver of a communication device, down-sampling said received RF signal to generate a channel k and its image channel −k at baseband frequencies, determining average in-phase (I) and quadrature (Q) gain and phase mismatch of said channel k and said image channel −k, removing said average I and Q gain and phase mismatch of said channel k and said image channel −k, determining, after said removing said average I and Q gain and phase mismatch, a residual phase tilt of said channel k and said image channel −k, and compensating for said determined residual phase tilt of said channel k and said image channel −k utilizing a phase tilt correction filter.
Abstract:
Aspects of a method and apparatus for band separation for multiband communication systems are provided. One or more circuits for use in a transceiver may comprise a triplexer and a leakage processing module. The triplexer may comprise a first port, a Multimedia Over Coaxial Alliance (MoCA) port, a television upstream port, and a television downstream port. The leakage processing module may comprise a television downstream input port, a cable television downstream output port, a MoCA port, and a cable television upstream port. The leakage processing module may be operable to (1) process a MoCA signal to generate a first compensation signal; (2) process a cable upstream signal to generate a second compensation signal; (3) process a filtered signal based at least in part on the first and second compensation signals; and (4) output the processed filtered signal via the cable television downstream output port of said leakage processing module.
Abstract:
In an example implementation of this disclosure, a message passing low density parity check (LDPC) decoder may, during decoding of a first group of bits, lock a first variable node upon a bit-value probability of the first variable node reaching a determined threshold, and lock a first check node upon all variable nodes connected to the first check node being locked. The LDPC decoder may cease decoding the first group of bits upon all variable nodes of the LDPC decoder being locked, all check nodes of the LDPC decoder being locked, reaching a maximum number of iterations, or reaching a timeout. During a particular iteration of the decoding of the first group of bits in which the first variable node is locked, the LDPC decoder may refrain from generating a bit-value probability for the locked first variable node.
Abstract:
Aspects of methods and systems for transceiver array synchronization are provided. An array based communications system comprises a plurality of transceiver circuits and an array coordinator. Each transceiver circuit of the plurality of transceiver circuits comprises a plurality of wireless transmitters and a local oscillator generator. Each wireless transmitter of the plurality of wireless transmitters is able to modulate a local oscillator signal from the local oscillator generator based on a weighted sum of a plurality of digital datastreams. The array coordinator is able to adjust a phase of a first local oscillator signal based on a phase difference between the first local oscillator signal and a second local oscillator signal. The first local oscillator signal is generated by a first local oscillator generator of a first transceiver circuit. The second local oscillator signal is generated by a second local oscillator generator of a second transceiver circuit.
Abstract:
An array based communications system may comprise a plurality of element processors. Each element processor may comprise a desired beam generation circuit and a suppression beam generation circuit. The desired beam generation circuit may generate a first plurality of complex coefficients. A desired beam may be generated according to a first weighted sum comprising a plurality of digital datastreams weighted by a corresponding complex coefficient of the first plurality of complex coefficients. The suppression beam generation circuit may generate a second plurality of complex coefficients. A suppression beam may be generated according to a second weighted sum comprising the plurality of digital datastreams weighted by a corresponding complex coefficient of the second plurality of complex coefficients.
Abstract:
Circuitry for use in a network controller comprises a processor and memory. The network controller is operable to control communications in a network comprising a plurality of devices connected via a shared coaxial cable. The circuitry is operable to maintain one or more data structures that hold per-sender-receiver-pair link parameters and per-sender-receiver-pair bandwidth grant status. The circuitry is operable to, in response to receipt of a reservation request on the shared coaxial cable, decide which one or more of a plurality of subbands and which one or more of a plurality timeslots to reserve for the transmission based, at least in part, on the per-sender-receiver-pair link parameters and the per-sender-receiver-pair bandwidth grant status in the one or more data structures. The circuitry is operable to generate a reservation grant message that indicates the decided one or more subbands and the decided one or more timeslots.
Abstract:
A direct broadcast satellite (DBS) reception assembly may comprise an integrated circuit that is configurable between or among a plurality of configurations based on content requested by client devices served by the DBS reception assembly. In a first configuration, multiple satellite frequency bands may be digitized by the integrated circuit as a single wideband signal. In a second configuration, the satellite frequency bands may be digitized by the integrated circuit as a plurality of separate narrowband signals. The integrated circuit may comprise a plurality of receive paths, each of the receive chains comprising a respective one of a plurality of low noise amplifiers and a plurality of analog-to-digital converters.
Abstract:
In an example implementation of this disclosure, a message passing low density parity check (LDPC) decoder may, during decoding of a first group of bits, lock a first variable node upon a bit-value probability of the first variable node reaching a determined threshold, and lock a first check node upon all variable nodes connected to the first check node being locked. The LDPC decoder may cease decoding the first group of bits upon all variable nodes of the LDPC decoder being locked, all check nodes of the LDPC decoder being locked, reaching a maximum number of iterations, or reaching a timeout. During a particular iteration of the decoding of the first group of bits in which the first variable node is locked, the LDPC decoder may refrain from generating a bit-value probability for the locked first variable node.
Abstract:
A network device may receive a signal from a headend, wherein a bandwidth of the received signal spans from a low frequency to a high frequency and encompasses a plurality of sub-bands. The network device may determine, based on communication with the headend, whether one of more of the sub-bands residing above a threshold frequency are available for carrying downstream data from the headend to the circuitry. The network device may digitize the signal using an ADC operating at a sampling frequency. The sampling frequency may be configured based on a result of the determining. When the sub-band(s) are available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively high frequency. When the sub-band(s) are not available for carrying downstream data from the headend to the network device, the sampling frequency may be set to a relatively low frequency.
Abstract:
Aspects of a method and apparatus for band separation for multiband communication systems are provided. One or more circuits for use in a transceiver may comprise a triplexer and a leakage processing module. The triplexer may comprise a multiband port, a Multimedia Over Coaxial Alliance (MoCA) port, a television upstream port, and a television downstream port. The leakage processing module may comprise a television downstream input port, a cable television downstream output port, a MoCA port, and a cable television upstream port. The leakage processing module may be operable to (1) process a MoCA signal to generate a first compensation signal; (2) process a cable upstream signal to generate a second compensation signal; (3) process a filtered signal based at least in part on the first and second compensation signals; and (4) output the processed filtered signal via the cable television downstream output port of said leakage processing module.