Abstract:
A multi-propeller unmanned aerial system (UAS) with a wind-resistant software platform that allows for motor support arm rotation, thereby allowing two propellers to move the drone forward and backward, or rotate it, through thrust vectoring, while the other propellers maintain hover. Horizontal movement is possible without losing the level stability necessary for a number of drone-related functions such as aerial photography. The software platform of the UAS provides for the rotational movement of the motor support arm and motors to engage and disengage to allow for tiltrotor control, specifically two motors rotate to advance the UAS forward or reverse while the remaining propellers maintain hover. Propeller guards are provided for safety which do not affect the maximum thrust or flight maneuverability of the drone.
Abstract:
A method and system utilizing one or more agricultural drones to improve the monitoring, measuring and mapping of a field in order to produce contour maps that will be used in working a field, in particular, controlling a direction of tillage and/or controlling the spreading of matter (e.g., fertilizer, manure or sewage treatment sludge) across the field while preventing undue erosion and/or runoff.
Abstract:
Systems, devices, and methods for a transformable aerial vehicle are provided. In one aspect, a transformable aerial vehicle includes: a central body and at least two transformable frames assemblies respectively disposed on the central body, each of the at least two transformable frame assemblies having a proximal portion pivotally coupled to the central body and a distal portion; an actuation assembly mounted on the central body and configured to pivot the at least two frame assemblies to a plurality of different vertical angles relative to the central body; and a plurality of propulsion units mounted on the at least two transformable frame assemblies and operable to move the transformable aerial vehicle.
Abstract:
A solar powered aircraft having segmented wings that can be reconfigured during flight to optimize collection of solar energy are described. The aircraft have rigid construction that is resistant to inclement weather and is configured to rely on free flight control at high altitude and under conventional conditions, thereby providing flight duration in excess of 2 months. The aircraft is particularly suitable for use as part of a telecommunications network. A telecommunications network incorporating such aircraft is also discussed.
Abstract:
An aircraft is provided and includes a single sensor and wings extending outwardly in opposite directions from a fuselage. Each wing includes a main section, an engine section supported on the main section and tail surfaces extending transversely relative to the main section. The single sensor is mountable to one of the tail surfaces with a field of view (FOV) representable as a spherical wedge having a dihedral angle exceeding 180°.
Abstract:
A propeller includes a hub coaxially surrounding a longitudinal axis. A ring shroud coaxially surrounds the longitudinal axis and is spaced radially from the hub. The ring shroud includes an inner ring surface and a radially spaced, oppositely facing outer ring surface. At least one propeller blade is fixedly attached to both the hub and the inner ring surface and extends radially therebetween for mutual rotation therewith. At least one extending blade has a first extending blade end radially spaced from a second extending blade end. The first extending blade end is fixedly attached to the outer ring surface. The second extending blade end is cantilevered from the first extending blade end and is radially spaced from the ring shroud.
Abstract:
A rotary wing vehicle includes a body structure having an elongated tubular backbone or core, and a counter-rotating coaxial rotor system having rotors with each rotor having a separate motor to drive the rotors about a common rotor axis of rotation. The rotor system is used to move the rotary wing vehicle in directional flight.
Abstract:
A manned/unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle which controls the attitude of the vehicle during takeoff and landing by alternating the thrust of engines, which are separated in least two dimensions relative to the horizontal during takeoff. An aerial vehicle which uses a rotating platform of engines in fixed relationship to each other and which rotates relative to the wings of the vehicle for takeoff and landing.
Abstract:
A solar powered aircraft having segmented wings that can be reconfigured during flight to optimize collection of solar energy are described. The aircraft have rigid construction that is resistant to inclement weather and is configured to rely on free flight control at high altitude and under conventional conditions, thereby providing flight duration in excess of 2 months. The aircraft is particularly suitable for use as part of a telecommunications network. A telecommunications network incorporating such aircraft is also discussed.
Abstract:
Systems and/or methods for forming a multiple-articulated flying system (skybase) having a high aspect ratio wing platform, operable to loiter over an area of interest at a high altitude are provided. In certain exemplary embodiments, autonomous modular flyers join together in a wingtip-to-wingtip manner. Such modular flyers may derive their power from insolation. The autonomous flyers may include sensors which operate individually, or collectively after a skybase is formed. The skybase preferably may be aggregated, disaggregated, and/or re-aggregated as called for by the prevailing conditions. Thus, it may be possible to provide a “forever-on-station” aircraft.