Abstract:
Defined nanoparticle cluster arrays (NCAs) with total lateral dimensions of up to 25.4 μm by 25.4 μm have been fabricated on top of a 10 nm thin gold film using template guided self-assembly. This approach provides precise control of the structural parameters in the arrays allowing a systematic variation of the average number of nanoparticles in the clusters (n) and the edge to edge separation (Λ) between 1
Abstract:
The invention encompasses analyzers and analyzer systems that include a single molecule analyzer, methods of using the analyzer and analyzer systems to analyze samples, either for single molecules or for molecular complexes. The single molecule uses electromagnetic radiation that is translated through the sample to detect the presence or absence of a single molecule. The single molecule analyzer provided herein is useful for diagnostics because the analyzer detects single molecules with zero carryover between samples.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
The present disclosure provides a contamination resistant sensor port which includes one or more sealing members positioned so as to limit and/or prevent internal contamination of the sensor port with fluids and/or particles present in the environment outside the sensor port.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
An apparatus and method of quantitatively obtaining a measurement of pollen of a plant. One method of counting comprises imaging the sample with the pollen well-distributed in the focal plane of the imager. Image evaluation software can identify and count objects in the image that are consistent with pollen. Total pollen count for the plant can be derived from the count of pollen of the sample, proportionality of the sample volume to the starting volume, and proportionality of area of sample imaged to total area of sample. Pollen quantification can be used for research or commercial production decisions relative to the plant or its seed.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
A fluid handling and analysis system comprises a fluid transport network comprising at least a first fluid passageway. The fluid transport network includes a patient end that is configured to maintain fluid communication with a bodily fluid in a patient. A sample analysis chamber and waste container are each accessible via the fluid transport network. A pump unit is in operative engagement with the fluid transport network. The pump unit has an infusion mode in which the pump unit is operable to deliver an infusion fluid to the patient through the patient end, and a sample draw mode in which the pump unit is operable to draw a volume of the bodily fluid from the patient through the patient end, towards the sample analysis chamber. A spectroscopic fluid analyzer is configured to analyze a sample of the bodily fluid while the sample is in the sample analysis chamber, and determine a concentration of at least one analyte. The fluid transport network and the pump unit are configured to draw a volume of the bodily fluid from the patient, isolate a fraction of the bodily fluid from the volume, and pass the fraction to the sample analysis chamber and then to the waste container.
Abstract:
A fluid handling and analysis system is provided. The system includes a main analysis and control instrument and a fluid handling module that are removably engageable with the main instrument. The main instrument comprises a spectroscopic bodily fluid analyzer and at least one control element. The fluid handling module includes a spectroscopic sample cell and at least one fluid handling element, and the sample cell is accessible via the fluid handling element. The fluid handling element has a control interface configured to engage the control element when the main instrument and the fluid handling module are engaged.
Abstract:
In some embodiments, a system for bodily fluid sampling and analysis comprises a first fluid passageway having a patient end which is configured to provide fluid communication with a bodily fluid within a patient. A sample analysis chamber is accessible via the first fluid passageway. At least one pump is in operative engagement with the first fluid passageway such that the system is operable to periodically draw a sample of the bodily fluid from the patient through the first fluid passageway and toward the sample analysis chamber. A separator is accessible via the first fluid passageway and configured to remove at least one component from the sample of bodily fluid. A spectroscopic analyte detection system is configured to analyze the component of bodily fluid while the component of bodily fluid is in the sample analysis chamber, and determine a concentration of at least one analyte.