Abstract:
An optical fiber comprising: (i) a silica based passive core having a first index of refraction n1; (ii) a silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2, said cladding having at least one stress rod and at least one air hole extending longitudinally through the length of said optical fiber; and (iii) wherein said optical fiber supports a single polarization mode or poses polarization maintaining properties within the operating wavelength range.
Abstract:
The invention relates to a method for doping material, the method being characterized by depositing at least one dopant deposition layer or a part thereof on the surface of the material and/or on a surface of a part or parts thereof with the atom layer deposition (ALD) method, and further processing the material coated with a dopant in such a manner that the original structure of the dopant layer is changed to obtain new properties for the doped material. The material to be doped is preferably glass, ceramic, polymer, metal, or a composite material made thereof, and the further processing of the material coated with the dopant is a mechanical, chemical, radiation, or heat treatment, whereby the aim is to change the refraction index, absorbing power, electrical and/or heat conductivity, colour, or mechanical or chemical durability of the doped material.
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
An optical fiber comprising: (i) a silica based, rare earth doped core having a first index of refraction n1; (ii) a silica based inner cladding surrounding the core having a second index of refraction n2, such that n1>n2; (iii) a silica based outer cladding surrounding the inner cladding having a third index of refraction n3 such that n2>n3, wherein inner cladding diameter is at least 125 μm.
Abstract translation:一种光纤,包括:(i)具有第一折射率n 1的二氧化硅基稀土掺杂的核; (ii)围绕所述芯的基于二氧化硅的内包层,具有第二折射率n 2 2,使得n 1 2> n 2; (iii)围绕所述内包层的基于二氧化硅的外包层,其具有第三折射率n 3 3,使得n 2 2 N 3 N 3,其中 内包层直径至少为125μm。
Abstract:
Methods of manufacturing an optical fiber preform and an optical fiber, and an optical fiber formed by this method of manufacturing an optical fiber are provided, the optical fiber preform having a desired refractive index profile and being capable of suppressing an increase in loss due to the absorption by OH groups. A pipe is formed by an inside vapor phase deposition method such that glass layer to be formed into a core and a glass layer to be formed into a part of a cladding pipe are deposited in a starting pipe, the glass layers each containing at least one of fluorine, germanium, phosphorous, and chlorine, the starting pipe being made of a silica glass having an outside diameter in the range of 20 to 150 mm and a wall thickness in the range of 2 to 8 mm. The pipe thus formed is collapsed to form a glass rod in which the concentration of hydroxyl groups is 10 weight ppm or less in a region from the surface of the glass rod to a depth of 1 mm therefrom.
Abstract:
Methods are provided for forming optical devices, such as waveguides, with minimal defect formation. In one aspect, the invention provides a method for forming a waveguide structure on a substrate surface including forming a cladding layer on the substrate surface, forming a core layer on the cladding layer, depositing an amorphous carbon hardmask on the core layer, forming a patterned photoresist layer on the amorphous carbon hardmask, etching the amorphous carbon hardmask, and etching the core material.
Abstract:
An optical fiber, comprising: (i) a rare earth doped silica based elongated core with a first refractive index (n1) with an aspect ratio of 1:5 to 1; (ii) a silica based moat abutting and at least substantially surrounding the core, the moat having a refractive index n2, wherein n2 n3; and n3>n2; (iv) a silica based outer cladding surrounding said inner cladding, the outer cladding having a fourth refractive index (n4), such that n4
Abstract translation:一种光纤,包括:(i)具有长宽比为1:5至1的第一折射率(n <1> 1)的稀土掺杂二氧化硅基细长芯; (ii)邻接并且至少基本上围绕所述芯的基于二氧化硅的护城河,所述护城河具有折射率n 2 N 2,其中n 2 ; (iii)围绕所述护城河的基于二氧化硅的内包层,所述内包层具有第三折射率(n 3/3),其中n 1 <3> n 3 < SUB>; 和n 3 3 sub> n 2; (iv)围绕所述内包层的基于二氧化硅的外包层,所述外包层具有第四折射率(n≥4 sub>),使得n 4 光纤在工作波长带表现出单极化。
Abstract:
Disclosed is an optical-fiber preform having barrier layers to hydroxyl radicals, the optical-fiber preform comprising: a quartz tube in the form of a cylinder shape serving as a substrate for forming the optical-fiber preform; a first barrier layer for preventing hydroxyl radicals from permeating the optical-fiber preform and deposited onto the inner surface of the quartz tube; a second barrier layer having a permeation coefficient higher than the first barrier layer and deposited onto the first barrier layer; a third barrier layer having a permeation coefficient lower than the second barrier layer and deposited onto the second barrier layer; and, a core layer being located at the center of the optical-fiber preform.
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.