Abstract:
The invention relates to a method for producing a doped SiO2 slurry in which an SiO2 suspension is brought into interaction with at least one doping solution, wherein the SiO2 suspension and/or the doping solution act on one another in the form of an atomised spray, the average droplet diameter of which is in the range between 10 μm and 100 μm. The invention further relates to the use of an SiO2 slurry doped by the atomised spray method for the production of doped quartz glass, particularly for the production of laser-active quartz glass.
Abstract:
An ytterbium-doped optical fiber of the present invention includes: a core which contains ytterbium, aluminum, and phosphorus and does not contain germanium; and a cladding which surrounds this core. The ytterbium concentration in the core in terms of ytterbium oxide is 0.09 to 0.68 mole percent. The molar ratio between the phosphorus concentration in the core in terms of diphosphorus pentoxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 30. The molar ratio between the aluminum concentration in the core in terms of aluminum oxide and the above ytterbium concentration in terms of ytterbium oxide is 3 to 32. The molar ratio between the above aluminum concentration in terms of aluminum oxide and the above phosphorus concentration in terms of diphosphorus pentoxide is 1 to 2.5.
Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
Provided is a doped quartz glass member for plasma etching, which is used in a plasma etching process and is free from any problematic fluoride accumulation during use. The quartz glass member for plasma etching is used as a jig for semiconductor production in a plasma etching process, and includes at least two or more kinds of metal elements in a total amount of 0.01 wt % or more to less than 0.1 wt %, in which the metal elements are formed of at least one kind of a first metal element selected from metal elements belonging to Group 3B of the periodic table and at least one kind of a second metal element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids.
Abstract:
The invention relates to a method for the economic production of a blank for a component made from laser-active quartz glass in any form or dimension. The method comprises the following method steps: a) preparation of a dispersion with a solids content of at least 40 wt. %, comprising SiO2 nanopowder and doping agents, including a cation of the rare earth metals and transition metals in a fluid, b) granulation by agitation of the dispersion, with removal of moisture to form a doped SiO2 granulate of spherical porous granular particles with a moisture content of less than 35 wt. % and a density of at least 0.95 g/cm3, c) drying and purification of the SiO2 granulate, by heating to a temperature of at least 1000° C. to form doped porous SiO2 grains with an OH content of less than 10 ppm and d) sintering or fusing the doped SiO2 grains in a reducing atmosphere to give the blank made from doped quartz glass.
Abstract:
The present invention relates to an optical fiber for an optical amplifier and a method for manufacturing the same, which can be applied to an optical transmission system in the S-band area (4130 nm-1530 nm). According to the present invention, silica is used as a base material and the optical fiber for an optical amplifier contains Tm3+ ions and metal ions in a first core layer formed on an inner surface of a second core layer using the MCVD (Modified Chemical Vapor Deposition) method and a solution doping method whereby the practicability and productivity of the optical fiber are remarkably improved.
Abstract:
The invention relates to a method for the economic production of a blank for a component made from laser-active quartz glass in any form or dimension. The method comprises the following method steps: a) preparation of a dispersion with a solids content of at least 40 wt. %, comprising SiO2 nanopowder and doping agents, including a cation of the rare earth metals and transition metals in a fluid, b) granulation by agitation of the dispersion, with removal of moisture to form a doped SiO2 granulate of spherical porous granular particles with a moisture content of less than 35 wt. % and a density of at least 0.95 g/cm3, c) drying and purification of the SiO2 granulate, by heating to a temperature of at least 1000° C. to form doped porous SiO2 grains with an OH content of less than 10 ppm and d) sintering or fusing the doped SiO2 grains in a reducing atmosphere to give the blank made from doped quartz glass.
Abstract:
A thulium doped silicate glass composition which contains SiO2, Al2O3, and La2O3 emits visible and UV light when excited by infrared light. The glass composition may also contain GeO2 and Er2O3. When excited by infrared light of about 1060 nm, the glass emits visible light at fluorescent transitions of the Tm3null ions with major broad features at 365, 455, 472, 651, and 791 nm.
Abstract translation:含有SiO 2,Al 2 O 3和La 2 O 3的掺doped硅酸盐玻璃组合物在被红外光激发时发射可见光和UV光。 玻璃组合物还可以含有GeO 2和Er 2 O 3。 当由约1060nm的红外光激发时,玻璃在365nm,455nm,472nm,651nm和791nm处具有主要的广泛特征,在Tm 3+离子的荧光转变下发射可见光。
Abstract:
The present invention is directed at a family of glasses capable of absorbing UV radiation and filtering yellow light in the visible region of the spectrum, the family of glasses having a composition consisting essentially, in terms of weight percent on the oxide basis, of: 55-95.7% SiO2, 0-28% B2O3, 0.5-18% Al2O3, 0-4% SrO, 0-13% BaO, 0-13% CaO, 0-8% MgO, 0-7.5% Na2O, 0-9.5% K2O, 0-1.5% Li2O, 0-1.5% Sb2O3, 0.4-4.5% Nd2O3, and 0.1-1% CeO2. Glasses of the present invention are capable of employment as envelopes for tungsten-halogen lamps and other high temperature light sources, as well as sealed-beam incandescent headlights. Also, the glasses can be used as for other applications where high contrast and enhanced visible properties of transmitted or reflected visible light can be a benefit, such as opthalmic glass, computer screens with enhanced contrast properties, or glass hosts for lasers.
Abstract translation:本发明涉及能够吸收紫外辐射并过滤光谱可见光区域中的黄光的玻璃系列,具有以氧化物为基准的基本上以重量百分数计的组成的玻璃系列为:55 -95.7%SiO 2,0-28%B 2 O 3,0.5-18%Al 2 O 3,0-4%SrO,0-13%BaO,0-13%CaO,0-8%MgO,0-7.5%Na 2 O,0-9.5 %K2O,0-1.5%Li2O,0-1.5%Sb2O3,0.4-4.5%Nd2O3和0.1-1%CeO2。 本发明的玻璃能够用作钨卤素灯和其他高温光源以及密封束白炽灯的信封。 此外,眼镜可以用于其他应用,其中透射或反射的可见光的高对比度和增强的可见性可以是有益的,例如眼镜玻璃,具有增强的对比度性质的计算机屏幕或用于激光的玻璃主机。
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.