Abstract:
The present invention relates to an apparatus and method for controlling a pipeline-type ion cyclotron resonance mass spectrometer, in which an ion trap unit of the ion cyclotron resonance mass spectrometer is capable of using two digitizers at the same time, thus enabling a measurement process for detecting an electrical signal which indicates the mass of ions corresponding to a specific purpose, and another measurement process for detecting another electrical signal which indicates the mass of ions corresponding to another specific purpose, to be simultaneously performed. Accordingly, it is an aim of the present invention to provide an apparatus and method for controlling a pipeline-type ion cyclotron resonance mass spectrometer, which can overcome the problems of time delay among control procedures, and can present a signal detection step wherein an excitation electrode is utilized to improve the sensitivity and speed of signal detection.
Abstract:
The present invention provides a system and method of predicting the initial cooling of a superconducting magnet, which can predict the change in initial cooling temperature of a superconducting magnet when the superconducting magnet is cooled using an ultra-low refrigerator. In the system and method, the change in cooling temperature of a superconducting magnet can be accurately predicted by classifying influence factors related to the cooling of a superconducting magnet into a plurality of control volumes and inducing a governing equation with respect to each of the control volumes. Based on this system and method, the reliability of basic data required to design an apparatus for measuring a high magnetic field for forming an ultralow-temperature environment can be greatly improved.
Abstract:
Provided are a controller and a control method for improving signal performance of an ion cyclotron resonance mass spectrometer. The controller and control method apply electric signals for causing ions injected into an ion trap of the ion cyclotron resonance mass spectrometer to be injected to the center of the trap as close as possible to trap electrodes, and adjust biased ion motion by appropriately adjusting signals of trap electrodes for causing the injected ions to make ion motion, thereby improving the fidelity of ion signals. The control method for improving signal performance of an ion cyclotron resonance mass spectrometer includes an ion position adjustment process and an ion signal detection process.
Abstract:
Provided is an imaging system which includes an optical fiber array probe unit integrated with an endoscope unit, thereby simultaneously measuring structural information and functional information of a sample. The optical fiber array probe unit includes an optical fiber array probe integrated with lenses including an optical fiber lens with a lens surface of a predetermined radius of curvature in which one ends of optical fibers are integrally connected with each other by heating a predetermined region including the one ends of two of the optical fibers using a heating means, as an optical fiber array probe integrated lens on which the light transmitted from the light source is incident and which guides light reflected from the sample, and a detector for selectively detecting the light transmitted from the optical fiber array probe integrated with lenses in a predetermined range of wavelength.
Abstract:
The present invention relates to an image sensor comprising a microlens array, and to a manufacturing method thereof. The method of the present invention includes gradually increasing the aluminum composition ratio of a compound semiconductor as the latter gradually gets farther from a substrate, to enable a microlens-forming layer to grow, and making the oxidation rate of the region adjacent to the substrate slower and the oxidation rate of the region farther from the substrate faster, making the interface between the oxidized region and the unoxidized region into a lens shape after the completion of oxidation. The thus-made lens is integrated into an image sensor. The present invention reduces costs for manufacturing image sensors in which a microlens is integrated, increases the signal-to-noise ratio and resolution of the image sensor, and achieves improved sensitivity.
Abstract:
Iron oxide nano contrast agents for Magnetic Resonance Imaging which have superior T2 contrast effect, and also can be used as a storage or a carrier for drugs and so on, are disclosed. The iron oxide nano contrast agents can be prepared by the steps of: coating surfaces of hydrophobic FeO nanoparticles with a coating material selected from the group consisting of polyethylene glycol-phospholipid conjugate, dextran, chitosan, dimercaptosuccinic acid and mixtures thereof in an organic solvent to form hydrophilic FeO nanoparticles having hydrophilic surfaces and dispersibility in water; dispersing the hydrophilic FeO nanoparticles in water to oxidize FeO; and exposing the oxidized hydrophilic FeO nanoparticles to an acidic buffer to dissolve and remove interior unoxidized FeO portions, and thereby to form Fe3O4 nanoparticles having an interior space.
Abstract:
Provided is an imaging system which includes an optical fiber array probe unit integrated with an endoscope unit, thereby simultaneously measuring structural information and functional information of a sample. The optical fiber array probe unit includes an optical fiber array probe integrated with lenses including an optical fiber lens with a lens surface of a predetermined radius of curvature in which one ends of optical fibers are integrally connected with each other by heating a predetermined region including the one ends of two of the optical fibers using a heating means, as an optical fiber array probe integrated lens on which the light transmitted from the light source is incident and which guides light reflected from the sample, and a detector for selectively detecting the light transmitted from the optical fiber array probe integrated with lenses in a predetermined range of wavelength.
Abstract:
Disclosed herein are a multi-layer chip for gas chromatography and a method of fabricating the multi-layer chip. The multi-layer chip is fabricated by: forming fine channels at the same positions of a plurality of substrates using only a single photo mask and an alignment key; and stacking the substrates. That is, the multi-layer chip can be fabricated by a simple method, and the total length of the fine channels can be increase without a limit by stacking more substrates. In addition, layers of the substrates can be coated with different stationary phases, and a temperature control device can be attached to heat transfer contact portions of the multi-layer chip for controlling the temperature of the multi-layer chip rapidly and precisely. Therefore, the multi-layer chip may be useful for high-separability gas chromatography to separate and analyze an infinitesimal amount of a sample.
Abstract:
The present invention relates to a method for preparing anatase-type titanium dioxide (TiO2) nanoparticles, the method comprising the steps of: uniformly mixing titanium n-butoxide and cetyltrimethyl ammonium salt (CTAS) in water; subjecting the mixture to hydrothermal treatment at a temperature of 60˜120° C.; and collecting anatase-type titanium dioxide nanoparticles produced by the hydrothermal treatment and drying the collected nanoparticles. According to the present invention, anatase-type titanium dioxide nanoparticles having excellent crystallinity can be easily prepared in large amounts by a simple process without needing heat treatment.
Abstract:
Disclosed is a method for measuring trabecular bone parameters from MRI images, including: scanning an experimental group with a 3D MRI scanner; segmenting the MRI images to extract bone area and perform skeletonization of the bone area; detecting end-point, joint and branch voxels in the skeleton to analyze bone structure; and measuring trabecular bone parameters based on the result of the structural analysis. The method enables diagnosing osteoporosis.