Abstract:
A system is provided for allocating memory for data of a program for execution by a computer system with a multi-tier memory that includes LBM and HBM. The system accesses a data structure map that maps data structures of the program to the memory addresses within an address space of the program to which the data structures are initially allocated. The system executes the program to collect statistics relating to memory requests and memory bandwidth utilization of the program. The system determines an extent to which each data structure is used by a high memory utilization portion of the program based on the data structure map and the collected statistics. The system generates a memory allocation plan that favors allocating data structures in HBM based on the extent to which the data structures are used by a high memory utilization portion of the program.
Abstract:
A resiliency system detects and corrects memory errors reported by a memory system of a computing system using previously stored error correction information. When a program stores data into a memory location, the resiliency system executing on the computing system generates and stores error correction information. When the program then executes a load instruction to retrieve the data from the memory location, the load instruction completes normally if there is no memory error. If, however, there is a memory error, the computing system passes control to the resiliency system (e.g., via a trap) to handle the memory error. The resiliency system retrieves the error correction information for the memory location and re-creates the data of the memory location. The resiliency system stores the data as if the load instruction had completed normally and passes control to the next instruction of the program.
Abstract:
A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).
Abstract:
A method and system for detecting congestion in a network of nodes, abating the network congestion, and identifying the cause of the network congestion is provided. A congestion detection system may comprise a detection system, an abatement system, and a causation system. The detection system monitors the performance of network components such as the network interface controllers and tiles of routers to determine whether the network is congested such that a delay in delivering packets becomes unacceptable. Upon detecting that the network is congested, an abatement system abates the congestion by limiting the rate at which packets are injected into the network from the nodes. Upon detecting that the network is congested, a causation system may identify the job that is executing on a node that is the cause of the network congestion.
Abstract:
Systems and methods provide a debugger that debugs code using two versions of code, an optimized and a debuggable version of object code for subroutines, methods or functions. The debugger causes the appropriate version of the code to be executed depending on whether debug commands have been applied with respect to particular subroutines, methods or functions.
Abstract:
A method and system for detecting congestion in a network of nodes, abating the network congestion, and identifying the cause of the network congestion is provided. A congestion detection system may comprise a detection system, an abatement system, and a causation system. The detection system monitors the performance of network components such as the network interface controllers and tiles of routers to determine whether the network is congested such that a delay in delivering packets becomes unacceptable. Upon detecting that the network is congested, an abatement system abates the congestion by limiting the rate at which packets are injected into the network from the nodes. Upon detecting that the network is congested, a causation system may identify the job that is executing on a node that is the cause of the network congestion.
Abstract:
A parallelization assistant tool system to assist in parallelization of a computer program is disclosed. The system directs the execution of instrumented code of the computer program to collect performance statistics information relating to execution of loops within the computer program. The system provides a user interface for presenting to a programmer the performance statistics information collected for a loop within the computer program so that the programmer can prioritize efforts to parallelize the computer program. The system generates inlined source code of a loop by aggressively inlining functions substantially without regard to compilation performance, execution performance, or both. The system analyzes the inlined source code to determine the data-sharing attributes of the variables of the loop. The system may generate compiler directives to specify the data-sharing attributes of the variables.
Abstract:
A graph analysis system provides a variety of graph analysis tools for analyzing graphs, such as an overall characteristics report, an entity types graph, an ego entity type graph, various histograms, and graph comparison reports. The graph analysis tools also include tools for calculating a similarity score for graphs based on characteristics and weights selected by a user.
Abstract:
A method and system for detecting congestion in a network of nodes, abating the network congestion, and identifying the cause of the network congestion is provided. A congestion detection system may comprise a detection system, an abatement system, and a causation system. The detection system monitors the performance of network components such as the network interface controllers and tiles of routers to determine whether the network is congested such that a delay in delivering packets becomes unacceptable. Upon detecting that the network is congested, an abatement system abates the congestion by limiting the rate at which packets are injected into the network from the nodes. Upon detecting that the network is congested, a causation system may identify the job that is executing on a node that is the cause of the network congestion.
Abstract:
Computer cabinets, such as supercomputer cabinets, having progressive air velocity cooling systems are described herein. In one embodiment, a computer cabinet includes an air mover positioned beneath a plurality of computer module compartments. The computer module compartments can be arranged in tiers with the computer modules in each successive tier being positioned closer together than the computer modules in the tier directly below. The computer cabinet can also include one or more shrouds, flow restrictors, and/or sidewalls that further control the direction and/or speed of the cooling air flow through the cabinet.