Abstract:
Methods and systems for image scoring and analysis are provided. Scored and analyzed images may include digital pathology images. Image scoring and analysis methods may include techniques to identify nuclei and determine membrane staining extent through the use of a priori models. Image scoring and analysis methods may include techniques for membrane intensity determination. Images may be scored based on an extent of membrane staining and membrane intensity.
Abstract:
An apparatus for processing at least one biological sample accommodated on at least one carrier member (15) in a chamber includes, at least one reservoir (18) able to accommodate a fluid on a surface inside the chamber adjacent to and/or facing a substantial part of the at least one biological sample. The apparatus may comprise a bottom member (12) arranged to support at least one carrier member (15) carrying at least one biological sample and a lid (14) including at least one fluid reservoir (18). The reservoir filled with water provides humidity to the chamber and impedes drying out of the sample.
Abstract:
The present invention relates to methods and compounds for detection of molecular targets, such as biological or chemical molecules, or molecular structures, in samples using a host of experimental schemes for detecting and visualizing such targets, e.g. immunohistochemistry (IHC), in situ hybridization (ISH), ELISA, Southern, Northern, and Western blotting, etc.
Abstract:
An apparatus for processing a biological sample is provided. The biological sample being arranged on a first planar surface of a carrier, the apparatus having a second planar surface arranged substantially parallel to said first planar surface and at a first distance from said first planar surface. The first planar surface and said second planar surface are arranged at an angle (A) greater than zero degree from the horizontal plane (HP). The apparatus having a supply for supplying an amount of a liquid that is to be applied to said biological sample. The first planar surface and said second planar surface are configured to be arranged at a second distance from each other, said second distance being such that said supplied amount of liquid is distributed over said biological sample when said first planar surface and said second planar surface are brought to said second distance from each other.
Abstract:
A sample processing system 101 that may be automated and methods are disclosed where sample(s) 198 are arranged on a carrier element 197 and a process operation control system 171 automatically processes the sample(s) perhaps robotically according to an desired aggregation of event dictated by an input 173. Alteration of an initial aggregated event topology may be accepted while the system is processing an initial aggregation and varied-parameter robotic control simulation functionalities 606 may be accomplished to determine an enhanced sequence for processing. Suggested operator actions may be displayed that might further enhance the scheduling of the altered aggregated event topology together with an automatic operator need prompt 608 that may inform an operator of a need for a particular action in order to accomplish the desired tasks. Reversibility to proposed changes may be made available so that an operator may avoid having to activate proposed changes if they cause a processing result that is not acceptable.
Abstract:
The invention provides methods and compositions for hybridizing at least one molecule to a target. The invention may, for example, utilize a of cyclic and/or non-cyclic solvent that is non-toxic and may eliminate or reduce the amount of formamide in the hybridization composition.
Abstract:
Chromogenic conjugates for color-based detection of targets are described. The conjugates comprise a chromogenic moiety such as rhodamine, rhodol or fluorescein. The chromogenic moiety is linked to a peroxidase substrate. The chromogenic conjugates can be used in immunohistochemical analysis and in situ hybridization. The conjugates can be used to detect 1, 2, 3 or more targets in a sample by color.
Abstract:
The present invention relates to a method of biological labeling that occurs via a free radical chain reaction. The labeling occurs due to deposition of a detectable reporter molecule from a media comprising a substance comprising at least two moieties of a peroxidase enzyme substrate (termed herein ‘cross-linker’) in a target site comprising peroxidase activity and a biological marker. The labeling reaction described herein may generally be used to detect targets in a host of experimental schemes for detecting and visualizing a biological or chemical target, including immunohistochemistry (IHC), in situ hybridization (ISH), antibody-based staining methods such as ELISA, Southern, Northern, and Western blotting, and others.
Abstract:
This invention is directed to methods, kits, non-nucleotide probes as well as other compositions pertaining to the suppression of binding of detectable nucleic acid probes to undesired nucleotide sequences of genomic nucleic acid in assays designed to determine target genomic nucleic acid.
Abstract:
The invention provides compositions and methods for the detection of targets in a sample; in particular, an in situ hybridization (ISH) sample. Probes and detectable labels may be provided in multiple layers in order to increase the flexibility of a detection system, and to allow for amplification to enhance the signal from a target. The layers may be created by incorporating probes and detectable labels into larger molecular units that interact through nucleic acids base-pairing, including peptide-nucleic acid (PNA) base-pairing. Optional non-natural bases allow for degenerate base pairing schemes. The compositions and methods are also compatible with immunohistochemistry (IHC), immunocytochemistry (ICC), flow cytometry, enzyme immuno-assays (EIA), enzyme linked immuno-assays (ELISA), blotting methods (e.g. Western, Southern, and Northern), labeling inside electrophoresis systems or on surfaces or arrays, and precipitation, among other general detection assay formats. The invention is also compatible with many different types of targets, probes, and detectable labels.