Abstract:
A method of producing fuel from CO2 comprising introducing natural gas, steam, and recovered CO2 to a reformer to produce unshifted syngas characterized by a molar ratio of hydrogen to carbon monoxide of from about 1.7:1 to about 2.5:1; introducing the unshifted syngas to a water gas shift unit to produce a shifted syngas, wherein an amount of CO2 in the shifted syngas is greater than in the unshifted syngas; separating the CO2 from the shifted syngas to produce recycle CO2 and a hydrogen-enriched syngas; recycling the recycle CO2 to the reformer; introducing the unshifted syngas to a Fischer-Tropsch (FT) unit to produce an FT product, FT water, and FT tail gas, wherein the FT product comprises FT liquids and FT wax; and separating the FT liquids from the FT product to produce a fuel.
Abstract:
A duct assembly for flowing fluids includes a first duct positioned above the ground. The first duct is configured to flow a first fluid. In addition, the duct assembly includes a second duct positioned above the ground. The second duct is configured to flow a second fluid. The first duct and the second duct isolate the first fluid and the second fluid from each other. Further, the duct assembly includes a stand supporting the first duct and the second duct above the ground. The stand has an upper end positioned below the first duct and the second duct.
Abstract:
Systems and methods that utilize feed gases that are supplied in a wide range of compositions and pressure to provide highly efficient recovery of NGL products, such as propane, utilizing isenthalpic expansion, propane refrigeration, and shell and tube exchangers are described. Plants utilizing such systems and methods can be readily reconfigured between propane recovery and ethane recovery.
Abstract:
A system for carbon dioxide capture from a gas mixture comprises an absorber that receives a lean solvent system stream (containing a chemical solvent, physical-solvent, and water) from the stripper, a stripper that receives the rich solvent stream from the absorber and produces the product carbon dioxide and the lean solvent through the use of a reboiler in fluid communication with a lower portion of the stripper, a condenser in fluid communication with a vapor outlet of the stripper, a cross-exchanger in fluid communication with a rich solvent system outlet from the absorber and a rich solvent system inlet on the stripper, and a splitter. The splitter is configured to separate the rich solvent system stream into a first portion and second portion, where the first portion directly passes to the stripper and the second portion passes through the cross-exchanger prior to passing to the stripper.
Abstract:
Embodiments relate generally to methods and systems for processing a gas stream and for removing mercaptans from a feed stream. A method may comprise compressing a semi-treated gas stream, wherein the semi-treated gas stream comprises organic sulfur species and acid gas components; contacting the semi-treated gas stream with a lean solvent; removing at least a portion of the organic sulfur species and acid gas components from the semi-treated gas stream to produce a treated gas stream and a semi-rich solvent stream; contacting a feed gas stream with the semi-rich solvent, wherein the feed gas stream comprises organic sulfur species and acid gas components; and removing at least a portion of the organic sulfur species and acid gas components from the feed gas stream to produce the semi-treated gas stream based on contacting the semi-rich solvent with the feed gas stream.
Abstract:
Embodiments include systems and methods for processing a feed gas and acid gas removal. A method may comprise receiving a feed gas to an absorber; contacting the feed gas counter-currently with a lean solvent stream to remove acid gas from the feed gas; producing a treated feed gas stream from the absorber; producing a rich solvent stream from the absorber comprising H2S and CO2 removed from the feed gas; receiving a side stream from the absorber to a side cooler; removing at least a portion of the heat of absorption from the side stream by the side cooler; producing a first output stream from the side cooler that is routed back into the absorber at a point below a draw point for the side stream; and producing a second output stream from the side cooler that is routed back into the absorber at a point below the first output stream.
Abstract:
A module for an engineering, procurement, and construction (EPC) project is described. The module comprises machinery disposed on a baseplate. The baseplate is coupled with a support structure via adjustable, self-leveling chocks. The chocks maintain a level baseplate surface regardless of whether or not the underside of the baseplate and the support structure are parallel. The chocks reduce and/or eliminate the transfer of the deflection forces from the support structure to the baseplate.
Abstract:
A heat exchanger comprises an outer shell extending between axially opposed ends and having a first fluid inlet and a first fluid outlet, one or more tubes passing through the tubular shell, a collection vessel disposed in an upper surface of the outer shell or the first fluid outlet, and a level sensor configured to detect the presence of the second heat exchange fluid within the collection vessel. The first fluid inlet and the first fluid outlet provide a first fluid pathway for a first heat exchange fluid through the outer shell, and the one or more tubes are configured to provide a second fluid pathway for a second heat exchange fluid between a second fluid inlet and a second fluid outlet.
Abstract:
A method of producing hydrogen comprising receiving a sour gas comprising CO2, H2S, and ammonia from a sour water stripper; introducing the sour gas to an absorption system to produce an ammonia rich gas and a sulfide rich gas, wherein the ammonia rich gas comprises ammonia and CO2, and wherein the sulfide rich gas comprises H2S and CO2; compressing the ammonia rich gas in a compressing unit to a pressure of 400-600 psig to produce a compressed ammonia rich gas; introducing the compressed ammonia rich gas to an ammonia cracker unit comprising a catalyst to produce a cracked gas, wherein the ammonia cracker unit is characterized by a cracking temperature of 450-550° C., and wherein the cracked gas comprises hydrogen, nitrogen, and CO2; and introducing the cracked gas to a PSA unit to produce hydrogen and a PSA tail gas, wherein the PSA tail gas comprises nitrogen and CO2.
Abstract:
Variable N2 content in feed gas ranging from 3 mole % to 50 mole % can be rejected from the process using a feed exchanger that is fluidly coupled with a cold separator and a single fractionation column to produce a nitrogen vent stream and streams that are suitable to be further processed for NGL recovery and LNG production.