Abstract:
In accordance with the objective of the invention a new method is provided for the creation of a seal ring having dissimilar elements. The Critical Dimensions of the seal ring are selected with respect to the CD of other device features, such a seal vias, such that the difference in etch sensitivity between the created seal ring and the via holes is removed. All etch of the simultaneously etched features is completed at the same time, avoiding punch through of an underlying layer of etch stop material.
Abstract:
A method of fabrication used for semiconductor integrated circuit devices to define a thin copper fuse at a top via opening, in a partial etch, dual damascene integration scheme, efficiently reducing top metal thickness in a fusible link, for the purpose of laser ablation. Some advantages of the method are: (a) avoids copper fuse contact to low dielectric material, which is subject to the thermal shock of laser ablation, (b) increases insulating material thickness over the fuse using better thickness control, and most importantly, (c) reduces the copper fuse thickness, for easy laser ablation of the copper fuse, and finally, (d) uses USG, undoped silicate glass to avoid direct contact with low dielectric constant materials.
Abstract:
A process for creating a metal filled, dual damascene opening, in a composite insulator layer, has been developed. The process features selective RIE procedures, used to create a wide diameter opening in an upper silicon oxide layer, and a narrow diameter opening in a lower silicon oxide layer. Small area, silicon nitride islands, or shapes, a component of the composite insulator layer, are used as a stop layer, during the selective RIE procedures. The use of small area, silicon nitride shapes, offers less composite insulator capacitance, than counterparts fabricated using larger area, silicon nitride stop layers.
Abstract:
The present invention discloses a hybrid polysilicon/amorphous silicon TFT device for switching a LCD and a method for fabrication wherein a n.sup.+ doped amorphous silicon layer is advantageously used as a mask during a laser annealing process such that only a selected portion of a hydrogenated amorphous silicon layer is converted to a crystalline structure while other portions retain their amorphous structure. As a result, a polysilicon TFT and at least one amorphous silicon TFT are formed in the same structure and the benefits of both a polysilicon TFT and amorphous silicon TFT such as a high charge current and a low leakage current are retained in the hybrid structure.
Abstract:
The present invention includes forming a conductive layer on a substrate. Portions of the conductive layer are removed using a first photoresist layer as a mask. A first oxide layer is formed over the conductive layer and the substrate, and an amorphous silicon layer is then formed on the first oxide layer. After annealing the amorphous silicon layer, thereby transforming amorphous silicon layer to a polysilicon layer, a second oxide layer is formed on the polysilicon layer. The second oxide layer is removed using a second photoresist layer as a mask. An amorphous silicon carbon layer is formed over the second oxide layer and the polysilicon layer, and a heavily-doped amorphous silicon carbon layer is formed on the amorphous silicon carbon layer. After annealing the heavily-doped amorphous silicon carbon layer and the amorphous silicon carbon layer, thereby transforming the heavily-doped amorphous silicon carbon layer to a heavily-doped polysilicon carbon layer, and transforming the amorphous silicon carbon layer to a polysilicon carbon layer, portions of the polysilicon carbon layer, the heavily-doped polysilicon carbon layer and the polysilicon layer are removed using a third photoresist layer as a mask.
Abstract:
A method of fabricating a polycrystalline silicon thin-film transistor having two symmetrical lateral resistors is disclosed. Two sub-gates are formed along with a gate in the gate metal or polysilicon layer of the thin-film transistor. The two sub-gates that are located symmetrically on the two sides of the gate have equal distances to the gate. One sub-gate is near the drain of the thin film transistor and the other near the source. Two sections in the polycrystalline silicon layer of the thin film transistor are blocked by the two sub-gates and no impurity material is doped. The two undoped sections form the symmetrical lateral resistors of this invention. The lateral resistor near the drain decreases the electric field in the nearby depletion area when the thin-film transistor is switched off. The current leakage is reduced.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.
Abstract:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
Abstract:
A semiconductor structure includes a refractory metal silicide layer; a silicon-rich refractory metal silicide layer on the refractory metal silicide layer; and a metal-rich refractory metal silicide layer on the silicon-rich refractory metal silicide layer. The refractory metal silicide layer, the silicon-rich refractory metal silicide layer and the metal-rich refractory metal silicide layer include same refractory metals. The semiconductor structure forms a portion of a gate electrode of a metal-oxide-semiconductor device.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a capping layer over the high-k dielectric layer in the first region, forming a first metal layer over capping layer in the first region and over the high-k dielectric in the second region, thereafter, forming a first gate stack in the first region and a second gate stack in the second region, protecting the first metal layer in the first gate stack while performing a treatment process on the first metal layer in the second gate stack, and forming a second metal layer over the first metal layer in the first gate stack and over the treated first metal layer in the second gate stack.