Abstract:
Methods and systems for assessing tissue of a subject include receiving a time series of signal intensity data capturing the transit of an imaging agent through tissue over a period of time, wherein the tissue comprises a plurality of calculation regions and wherein signal intensity in each calculation region over the period of time may be approximated by a time-intensity curve corresponding to the calculation region; determining, for each calculation region, a coefficient value that is related to at least a portion of the time-intensity curve corresponding to the calculation region; and converting the coefficient values across the plurality of calculation regions into a coefficient-derived image map.
Abstract:
Systems and methods for storing data for a first time series of fluorescence images of the subject acquired during a first imaging session, storing data for a second time series of fluorescence images of the subject acquired during a second imaging session, receiving a request to view attributes of the subject, and in response to receiving the request, displaying a user interface on the display, the user interface comprising a first image showing a visually enhanced attribute of the subject, wherein the first image is generated from the data for the first time series of fluorescence images, and a second image showing the visually enhanced attribute of the subject, wherein the second image is generated from the data for the second time series of fluorescence images.
Abstract:
An endoscopic video system and method using a camera with a single color image sensor, for example a CCD color image sensor, for fluorescence and color imaging and for simultaneously displaying the images acquired in these imaging modes at video rates in real time is disclosed. The tissue under investigation is illuminated continuously with fluorescence excitation light and is further illuminated periodically using visible light outside of the fluorescence excitation wavelength range. The illumination sources may be conventional lamps using filters and shutters, or may include light-emitting diodes mounted at the distal tip of the endoscope.
Abstract:
Methods and systems for imaging tissue of a subject are disclosed, and involve illuminating the tissue with a coherent light having a coherent wavelength, acquiring image data of the tissue using a color image sensor, and processing the image data using laser speckle contrast analysis while correcting for differences in sensitivity of color pixels at the coherent wavelength to generate a perfusion image of the tissue. The perfusion image is then displayed to the user. Also disclosed are methods and systems for correcting for ambient light and for acquiring white light images along with laser speckle images.
Abstract:
Methods and systems for characterizing tissue of a subject are disclosed. The method includes receiving a time series of fluorescence images of the tissue of the subject wherein the images define a plurality of calculation regions, generating a plurality of time-intensity curves for the plurality of calculation regions, creating a set of parameter values for each calculation region, generating a total rank value for each calculation region by comparing the sets of parameter values, and converting the total rank value into a ranking map image. Also disclosed are methods and systems for characterizing a wound in tissue by generating a wound index value.
Abstract:
Disclosed herein is a composition for imaging nerve cells. The composition includes a fluorescent dye; and a viral component including a neurotropic herpes varicellae unable to replicate in nerve cells, a viral protein of a neurotropic herpes varicellae unable to replicate in nerve cells, a capsid of a neurotropic herpes varicellae unable to replicate in nerve cells, or a combination thereof. The fluorescent dye is bound to the viral component to form a dye/viral component complex that is capable of penetrating nerve cells.
Abstract:
An imaging system for acquisition of NIR and full-color images includes a light source providing visible light and NIR light to an area under observation, such as living tissue, a camera having one or more image sensors configured to separately detect blue reflectance light, green reflectance light, and combined red reflectance light/detected NIR light returned from the area under observation. A controller in signal communication with the light source and the camera is configured to control the light source to continuously illuminate area under observation with temporally continuous blue/green illumination light and with red illumination light and NIR excitation light. At least one of the red illumination light and NIR excitation light are switched on and off periodically in synchronism with the acquisition of red and NIR light images in the camera.
Abstract:
An optical system includes a first relay rod of a first material, a second relay rod of a second material, different from the first material, and a lens between the first and second relay rods.
Abstract:
Disclosed herein are methods, kits, and compositions for medical imaging relating to fluorescent dyes entrapped in erythrocytes. Also disclosed therein are methods, and compositions further comprising erythrocytes entrapping at least one therapeutically active agent, as well as methods for releasing the entrapped therapeutically active agent(s). Disclosed herein also are methods for preparation of the cells entrapping dye and therapeutically active agent(s) in a freeze-dried form that makes them readily available and easy to use in a clinical environment.
Abstract:
A method of determining the patency of a donor organ or at least one vessel to a donor organ in a donor subject includes administering a fluorescent dye to the donor subject, applying a sufficient amount of energy to the vessel such that the fluorescent dye fluoresces, obtaining a fluorescent image of the donor organ or the vessel attached to a donor organ, and observing the image to determine if a fluorescent signal is continuous through the vessel. A continuous fluorescent signal in the donor organ or vessel indicates the respective donor organ or vessel is patent