Abstract:
A method and apparatus for providing a conductive plane beneath a suspended microstructure. A conductive region is diffused into a substrate. A dielectric layer is added, covering the substrate, and then removed from a portion of the conductive region. A spacer layer is deposited over the dielectric and exposed conductive region. A polysilicon layer is deposited over the spacer layer, and formed into the shape of the suspended microstructure. After removal of the spacer layer, the suspended microstructure is left free to move above an exposed conductive plane. The conductive plane is driven to the same potential as the microstructure.
Abstract:
An electro-mechanical micromachined structure uses bumpers to prevent contact between structures at different potentials. A beam is connected to one or more anchors by flexible suspensions, which permit the beam to move along a predetermined axis relative to one or more plates. The suspension includes at least one bumper positioned so that the bumper will contact another part of the suspension before the beam contacts the plates. The bumper is made from the same material as the suspension, during the same processing step. The bumper is positioned to take advantage of shrinkage or expansion of the beam during processing which forces the bumper closer to its contact point then would otherwise be possible.
Abstract:
An electrostatically driven microactuator is micromachined in a monolithic process. Sacrificial layers are placed between a moving element and stator structural layers. Removal of the sacrificial layers leaves a free standing moving element and micron wide air gaps within a stator. An electric field of about 100 Mv/m and higher is supported across the micron wide gap without breakdown and enables high energy torque densities to be produced between the stator and the moving element. One electrostatic drive scheme involves a series of stator electrodes attached to the stator and a series of electrodes attached to the moving element charged in sequence to attract each other in a direction of movement and to oppose each other in a direction normal to movement. A bearing is aligned with the moving element with the stator during the layering of a sacrificial layer over an edge of the moving element structural layer. The bearing and stator laterally stabilize the moving element. Vertical stability is through aerodynamic shaping of the moving element, electronic circuits, or bushings. Applications of the microactuator include a linearly sliding shutter, an optical modulator, a gyroscope and an air pump.
Abstract:
A microbridge is used for the accurate measuring of time varying shear forces in the presence of fluctuating pressure. A microdimensioned plate is suspended by arms to form a microbridge. The microdimensions enable the smallest turbulence scales of interest to be sensed uniformally throughout the entire surface of the plate. The cavity beneath the microbridge is so small that a viscous drag is created in the air within the cavity and dampens normal movement of the plate. The microdimensions in conjunction with the damping effect of the cavity enable the sensor to be substantially insensitive to pressure and thus sense lateral forces independent of normal forces. The microbridge sensor is fabricated by surface micromachining. A sacrificial layer is deposited over a substrate. A structural layer is deposited and patterned to form the plate and support arms over the sacrificial layer. The cavity is formed by a selective etchant removing the sacrificial layer and leaving the rest of the microbridge structure suspended above the substrate. In a differential capacitance readout scheme, a conducting layer in the plate of the microbridge is capacitively coupled with conductors in the substrate. A sensed change in capacitive coupling generates an indication of plate deflection and thereby shear stress independent of vertical movement. Optic readout schemes may also be employed and are readily incorporated in the fabrication process. A mounting member presses the microbridge sensor into a holding plate which fits in a matching slot flush with the target wall.
Abstract:
An accelerometer is provided by a sample mass suspended in a central area of a support by pairs of resonating arms. One pair of arms lies on one axis through the sample mass. Another pair of arms lies on a second axis through the sample mass perpendicular to the one axis. Acceleration of the mass and support is detected by a measured change in resonant frequency of the arms of a pair. The measured change in resonant frequency is the magnitude of the acceleration and the axis along which the pair of arms lies provides the direction of the acceleration. Orthogonal components of acceleration are simultaneously measured by the pairs of arms lying on perpendicular axes. Electrostatic force-rebalance techniques and other known techniques for measuring acceleration in a direction perpendicular to the axes of the pairs of arms are readily incorporated to provide a third direction measurement of acceleration. The accelerometer is fabricated in a monolithic process which employs micromachining techniques.
Abstract:
Various applications are directed to a material stack having a strained active material therein. In connection with an embodiment, an active material (e.g. a semiconductor material) is at least initially and partially released from and suspended over a substrate, strained, and held in place. The release and suspension facilitates the application of strain to the semiconductor material.
Abstract:
Low temperature, multi-layered, planar microshells for encapsulation of devices such as MEMS and microelectronics. The microshells include a planar perforated pre-sealing layer, below which a non-planar sacrificial layer is accessed, and a sealing layer to close the perforation in the pre-sealing layer after the sacrificial material is removed. In an embodiment, the pre-sealing layer has perforations formed with a damascene process to be self-aligned to the chamber below the microshell. The sealing layer may include a nonhermetic layer to physically occlude the perforation and a hermetic layer over the nonhermetic occluding layer to seal the perforation. In a particular embodiment, the hermetic layer is a metal which is electrically coupled to a conductive layer adjacent to the microshell to electrically ground the microshell.
Abstract:
Low temperature, multi-layered, planar microshells for encapsulation of devices such as MEMS and microelectronics. The microshells include a planar perforated pre-sealing layer, below which a non-planar sacrificial layer is accessed, and a sealing layer to close the perforation in the pre-sealing layer after the sacrificial material is removed. In an embodiment, the pre-sealing layer has perforations formed with a damascene process to be self-aligned to the chamber below the microshell. The sealing layer may include a nonhermetic layer to physically occlude the perforation and a hermetic layer over the nonhermetic occluding layer to seal the perforation. In a particular embodiment, the hermetic layer is a metal which is electrically coupled to a conductive layer adjacent to the microshell to electrically ground the microshell.
Abstract:
Low temperature, multi-layered, planar microshells for encapsulation of devices such as MEMS and microelectronics. The microshells include a planar perforated pre-sealing layer, below which a non-planar sacrificial layer is accessed, and a sealing layer to close the perforation in the pre-sealing layer after the sacrificial material is removed. In an embodiment, the pre-sealing layer has perforations formed with a damascene process to be self-aligned to the chamber below the microshell. The sealing layer may include a nonhermetic layer to physically occlude the perforation and a hermetic layer over the nonhermetic occluding layer to seal the perforation. In a particular embodiment, the hermetic layer is a metal which is electrically coupled to a conductive layer adjacent to the microshell to electrically ground the microshell.
Abstract:
A MEMS coupler and a method to form a MEMS structure having such a coupler are described. In an embodiment, a MEMS structure comprises a member and a substrate. A coupler extends through a portion of the member and connects the member with the substrate. The member is comprised of a first material and the coupler is comprised of a second material. In one embodiment, the first and second materials are substantially the same. In one embodiment, the second material is conductive and is different than the first material. In another embodiment, a method for fabricating a MEMS structure comprises first forming a member above a substrate. A coupler comprised of a conductive material is then formed to connect the member with the substrate.