Abstract:
The present invention provides a device for suppressing common-mode radiation comprising: at least one resonator embedded into a plate, wherein the at least one resonator defines a plane having a normal direction parallel and perpendicular, respectively, to a longitudinal direction and a thickness direction of the plate. The embedment of the resonator into the plate enables a magnetic field, which is generated by a cable conductor when the device for suppressing common-mode radiation wraps the cable conductor therein, to perpendicularly pass through the plane so that the magnetic field and the resonator resonate together to generate a strong diamagnetism and thereby to suppress the common-mode radiation.
Abstract:
An electromagnetic noise suppression circuit is provided. The suppression circuit comprises a first substrate, a first grounding plane and at least one transmission line. The transmission line is configured on a top surface of the first substrate and the first grounding plane is configured on the bottom surface of the first substrate. The first grounding plane comprises a first distributed coupling structure. The first distributed coupling structure and the transmission line can be equivalent to an inductor-capacitor resonant circuit. The electromagnetic noise within a designated frequency band can be suppressed by the distributed coupling structure of the electromagnetic noise suppression circuit to avoid interfering the signal transmitted by the transmission line and the electromagnetic radiation induced by the electromagnetic noise.
Abstract:
A method for reducing EM radiation comprises at least one first resonance line disposed on one of electric surfaces, which is disposed at a side of a transmission line structure on one of the electric surface. The resonance line crosses over a slot of another electric surface. The slot is etched on a corresponding electric surface. In addition, the transmission line structure crosses over the slot of the electric surface. Then, the first resonance line connects the electric surface having the slot with another electric surface. It can adjust at least one of a length, a width and a shape of the first resonance line, to make an input impedance seen from a crossed point between the transmission line structure and the slot approximately 0.
Abstract:
A transmission line with a structure which is capable of forming a passive equalizer and an electrical apparatus using the same are illustrated. The transmission line has a substrate, a ground plane, a defect ground structure, a pair of transmission conducting lines, and at least one stub. The substrate has a plurality of surfaces. The ground plane is located on at least one of the surfaces. The defect ground structure is formed on the ground plane. The pair of transmission conducting lines is located on one of the surfaces, and stretching over the defect ground structure. The at least one stub is located above a plane of the defect ground structure, extending along with at least one side of two sides of the pair of the transmission conducting lines, and electrically coupled to the pair of the transmission conducting lines and the ground plane.
Abstract:
Provided are common mode filtering method and device for use with a defected ground structure, the device including a substrate, coupled microstrip lines formed on the substrate and a ground plane formed underneath the substrate, the common mode filtering method being characterized by forming at least a defected ground structure on the ground plane and making dual mode signals pass through the coupled microstrip lines, thereby using the defected ground structure to suppress dual model noises within a specific frequency band and prevent signal distortion.
Abstract:
The present invention provides a device for suppressing common-mode radiation comprising: at least one resonator embedded into a plate, wherein the at least one resonator defines a plane having a normal direction parallel and perpendicular, respectively, to a longitudinal direction and a thickness direction of the plate. The embedment of the resonator into the plate enables a magnetic field, which is generated by a cable conductor when the device for suppressing common-mode radiation wraps the cable conductor therein, to perpendicularly pass through the plane so that the magnetic field and the resonator resonate together to generate a strong diamagnetism and thereby to suppress the common-mode radiation.
Abstract:
An electromagnetic bandgap (EBG) cell comprises a plurality of first conductive line layers beneath a first integrated circuit (IC) die, wherein wires on at least one of the first conductive line layers are each connected to one of a high voltage source and a low voltage source and are oriented to form a first mesh structure at a bottom of the EBG cell. The EBG cell further comprises a pair of through-substrate-vias (TSVs) above the plurality of first conductive line layers, wherein the pair of TSVs penetrate the first IC die and are connected to a high voltage source and a low voltage source, respectively, and a pair of micro bumps above a dielectric layer above the pair of TSVs, wherein the micro bumps connect the TSVs of the first IC die with a plurality of second conductive line layers formed on a second IC die.
Abstract:
A noise filtering circuit for suppressing electromagnetic interference (EMI) is provided. The noise filtering circuit filters out high multiplied-frequency noise of a digital signal being transmitted and includes a reference voltage structure formed from conductors, a signal transmitting structure formed from a transmission conductor, a ground layer, and a ground structure electrically connected to the reference voltage structure and the ground layer. The ground structure is configured to form an inductor-capacitor oscillating structure in coordination with the electric-magnetical coupling between the reference voltage structure and the signal transmitting structure as well as the inductance of the ground structure, so that a digital signal is filtered out at a specific frequency and the passband of the digital signal can be transmitted.
Abstract:
An exemplary embodiment of the present disclosure illustrates a multilayer circuit board structure, for suppressing the undesired electromagnetic wave propagation within a specific frequency band. The multilayer circuit board structure includes a plurality of crystals and a plurality of conducting channels, wherein a crystal includes a first through fourth conducting planes, at least a first conducting connector, and at least a second conducting connector, wherein the first through the fourth conducting planes are substantially parallel to each other. The first conducting plane is electrically connected to the third conducting plane through the first conducting connector. The fourth conducting plane is electrically connected to the second conducting plane through the second conducting connector. The first and the third conducting planes are configured to be electrically separated from the second and the fourth conducting planes. Furthermore, the conducting channels are for electrically connecting between crystals in the multilayer circuit board structure.
Abstract:
A common mode noise suppression circuit applicable to differential signal transmission performs common mode noise suppression with respect to differential signals transmitted by a transmission line. An inductance-capacitance resonant structure is formed based on electromagnetic coupling combining a ground structure to suppress common mode noise of differential mode signals at broadband meanwhile keeping low loss of the differential mode signals at broadband via differential transmission lines. By this, the common mode noise suppression circuit performs broadband suppression with related to the common mode noise within a frequency scope of several GHz without affecting the differential mode signals and improves manufacturing process miniaturization to decrease cost.