Abstract:
A method for spin-on wafer cleaning. The method comprises controlling spin speed and vertical water jet pressure. The vertical jet pressure and the spin speed are substantially maintained in inverse proportion. Wafer spin speed is between 50 to 1200 rpm. Vertical wafer jet pressure is between 0.05 to 100 KPa.
Abstract:
A method of forming post passivation interconnects for an integrated circuit is disclosed. A passivation layer of a non-oxide material is formed over the integrated circuit. A buffer layer is then formed over the passivation layer. The buffer layer preferably is a silicon oxide layer with a thickness substantially smaller than a thickness of the passivation layer. A post passivation metal layer is deposited over the buffer layer and a connection pattern is formed in the post passivation metal layer.
Abstract:
A method suitable for cleaning the interior surfaces of a process chamber is disclosed. The invention is particularly effective in removing silicon nitride and silicon dioxide residues from the interior surfaces of a chemical vapor deposition (CVD) chamber. The method includes reacting nitrous oxide (N2O) gas with nitrogen trifluoride (NF3) gas in a plasma to generate nitric oxide (NO) and fluoride (F) radicals. Due to the increased density of nitric oxide radicals generated from the nitrous oxide, the etch and removal rate of the residues on the interior surfaces of the chamber is enhanced. Consequently, the quantity of nitrogen trifluoride necessary to efficiently and expeditiously carry out the chamber cleaning process is reduced.
Abstract translation:公开了一种适于清洁处理室内表面的方法。 本发明特别有效地从化学气相沉积(CVD)室的内表面去除氮化硅和二氧化硅残余物。 该方法包括在等离子体中使一氧化二氮(N 2 O 2 O)气体与三氟化氮(NF 3 N 3)气体反应以产生一氧化氮(NO)和氟化物(F)基团 。 由于由一氧化二氮产生的一氧化氮自由基的密度增加,腔室内表面上残留物的蚀刻和去除速度增强。 因此,有效且快速地进行室清洁处理所需的三氟化氮的量减少。
Abstract:
A method of forming post passivation interconnects for an integrated circuit is disclosed. A passivation layer of a non-oxide material is formed over the integrated circuit. A buffer layer is then formed over the passivation layer. The buffer layer preferably is a silicon oxide layer with a thickness substantially smaller than a thickness of the passivation layer. A post passivation metal layer is deposited over the buffer layer and a connection pattern is formed in the post passivation metal layer.
Abstract:
The present invention relates to a method of protecting a fresh metal surface, preferably copper, after a metal deposition step. The metal deposition is preferably part of single or dual damascene process. The metal surface is treated with an amine, preferably BTA, to form a metal complex that is a hydrophobic monolayer and prevents the underlying metal from reacting to form oxides that can degrade device performance. The amine can be applied in various ways including dipping, spraying, spin coating, and by a CVD method. The sacrificial protective layer can remain on the substrate during a storage period of up to hours or days before it is removed in a subsequent chemical mechanical polish step. The use of a sacrificial protective layer improves throughput in a damascene process by allowing long queue times between metal deposition and CMP which gives more flexibility to production flow and reduces cost.
Abstract:
A method for capping over a copper layer. A copper layer is deposited overlying a substrate. The copper surface is treated with hydrogen-containing plasma to remove copper oxides formed thereon, thereby suppressing copper hillock formation. The treated copper surface is treated again with nitrogen-containing plasma to improve adhesion of the copper surface. A capping layer is formed on the copper layer.
Abstract:
A method and system is disclosed for reducing slurry usage in a chemical mechanical polishing operation utilizing at least one polishing pad thereof. Slurry can be intermittently supplied to a chemical mechanical polishing device. The slurry is generally flushed so that a portion of said slurry is trapped in a plurality of pores of at least one polishing pad associated with said chemical mechanical polishing device, wherein only a minimum amount of said slurry necessary is utilized to perform said chemical mechanical polishing operation, thereby reducing slurry usage and maintaining a consistent level of slurry removal rate performance and a decrease in particle defects thereof. The present invention thus discloses a method and system for intermittently delivering slurry to a chemical mechanical polishing device in a manner that significantly conserves slurry usage.
Abstract:
A method for fabricating a dual gate thin film transistor (TFT) device provides for forming a pair of source/drain layers self-aligned with respect to a first gate electrode and forming a second gate electrode self-aligned with respect to both the pair of source/drain layers and the first gate electrode. Thus, the dual gate TFT device is fabricated with enhanced alignment. In addition, the dual gate TFT device (or a single gate TFT device) may be fabricated with source/drain layers formed of a silicon-germanium alloy material, such as to provide the TFT device with enhanced performance with respect to a kink effect.
Abstract:
A method of forming a planarized final copper structure including the following steps. A structure is provided having a patterned dielectric layer formed thereover. The patterned dielectric layer having an opening formed therein. A barrier layer is formed over the patterned dielectric layer, lining the opening. An initial planarized copper structure is formed within the barrier layer lined opening, and is planar with the barrier layer overlying the patterned dielectric layer. The initial planarized copper structure is recessed below the barrier layer overlying the patterned dielectric layer a distance to form a recessed copper structure. Any copper oxide formed upon the recessed copper structure is removed. A conductor film is formed over the recessed, copper oxide-free initial copper structure and the barrier layer. The excess of the conductor film is removed from over the barrier layer, and the excess of the barrier layer overlying the patterned dielectric layer is removed, by a planarization process to form the planarized final copper structure. The planarized final copper structure comprising: the lower, recessed copper oxide-free initial copper structure; and an overlying planarized conductor film, wherein the overlying planarized conductor film isolates the lower, recessed copper oxide-free initial copper structure from the ambient atmosphere.
Abstract:
A method of removing residual contamination including metal nitride particles from semiconductor wafer surfaces including the steps of: providing at least one semiconductor wafer with metal nitride particles adhering to the at least one semiconductor wafer surface thereto; subjecting the at least one semiconductor wafer to at least one mechanical brushing process while a cleaning solution including a carboxylic acid is supplied to at least one semiconductor wafer surface; and, subjecting the at least one semiconductor wafer to an a sonic cleaning process including the carboxylic acid cleaning solution.