Abstract:
A wireless IC device includes a wireless IC chip, a power supply circuit board upon which the wireless IC chip is mounted, and in which a power supply circuit is provided, the power supply circuit includes a resonant circuit having a predetermined resonant frequency, and a radiation pattern, which is adhered to the underside of the power supply circuit board, for radiating a transmission signal supplied from the power supply circuit, and for receiving a reception signal to supply this to the power supply circuit. The resonant circuit is an LC resonant circuit including an inductance device and capacitance devices. The power supply circuit board is a multilayer rigid board or a single-layer rigid board, and between the wireless IC chip and the radiation pattern is connected by DC connection, magnetic coupling, or capacitive coupling.
Abstract:
An article having an electromagnetic coupling module attached thereto includes an electromagnetic coupling module and a PET bottle having the electromagnetic coupling module bonded thereto. The electromagnetic coupling module includes a wireless IC chip arranged to process transmission and reception signals and the feed circuit board having the wireless IC chip mounted thereon. The feed circuit board includes a feed circuit including a resonant circuit having a predetermined resonant frequency. The feed circuit performs characteristic impedance matching between the PET bottle and the wireless IC chip. The PET bottle functions as a radiator arranged to radiate a transmission signal supplied from the feed circuit using electromagnetic field coupling and to supply a received reception signal to the feed circuit using electromagnetic field coupling.
Abstract:
A wireless IC device includes a wireless IC chip, a feed circuit board having the wireless IC chip mounted thereon and including a feed circuit including inductance elements, and a radiation plate electromagnetically coupled to the inductance elements in the feed circuit. A high-permeability magnetic body made of a high-permeability magnetic material is provided in the feed circuit board and a portion of the inductance elements is provided in the high-permeability magnetic body.
Abstract:
An antenna and a wireless IC device that includes the antenna are provided for which the manufacturing process is simple and for which there is a low probability of a poor connection occurring between a feeder portion and a radiation electrode. An antenna includes a radiation electrode that is provided on a main surface of an insulator board, a ground electrode and/or a counter electrode that is arranged so as to oppose the radiation electrode, and a magnetic field electrode that is connected to the radiation electrode through a connection portion. The magnetic field electrode is defined by line-shaped electrodes and feeds a signal to the radiation electrode from a feeder portion defined by ends of the line-shaped electrodes through the magnetic field electrode.
Abstract:
A wireless IC device includes a wireless IC chip, a power supply circuit board upon which the wireless IC chip is mounted, and in which a power supply circuit is provided, the power supply circuit includes a resonant circuit having a predetermined resonant frequency, and a radiation pattern, which is adhered to the underside of the power supply circuit board, for radiating a transmission signal supplied from the power supply circuit, and for receiving a reception signal to supply this to the power supply circuit. The resonant circuit is an LC resonant circuit including an inductance device and capacitance devices. The power supply circuit board is a multilayer rigid board or a single-layer rigid board, and between the wireless IC chip and the radiation pattern is connected by DC connection, magnetic coupling, or capacitive coupling.
Abstract:
An antenna and a wireless communication device which are suitable for an RFID system and in which radiation characteristics are prevented from being changed as a result of impedance adjustment are configured such that the antenna includes a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends, feeding portions arranged inside the first loop electrode, a second loop electrode connected to the feeding portions, and a coupling electrode that couples the first loop electrode and the second loop electrode to each other. The wireless communication device is obtained by coupling the wireless communication element which processes a high-frequency signal to the feeding portions.
Abstract:
A wireless IC device includes a wireless IC chip, a power supply circuit board upon which the wireless IC chip is mounted, and in which a power supply circuit is provided, the power supply circuit includes a resonant circuit having a predetermined resonant frequency, and a radiation pattern, which is adhered to the underside of the power supply circuit board, for radiating a transmission signal supplied from the power supply circuit, and for receiving a reception signal to supply this to the power supply circuit. The resonant circuit is an LC resonant circuit including an inductance device and capacitance devices. The power supply circuit board is a multilayer rigid board or a single-layer rigid board, and between the wireless IC chip and the radiation pattern is connected by DC connection, magnetic coupling, or capacitive coupling.
Abstract:
A wireless IC device that is miniaturized, allows simple and low-cost mounting of a wireless IC, and eliminates the possibility of damage occurring to the wireless IC due to static electricity, and an electronic apparatus equipped with the wireless IC device, includes a wireless IC chip that processes transmission and reception signals, and a feeder circuit substrate that includes a resonant circuit having an inductance element. Feeder electrodes are provided on a surface of the feeder circuit substrate and are electromagnetically coupled to the resonant circuit. The feeder electrodes and are electromagnetically coupled to radiation plates and provided for a printed wiring board. The wireless IC chip is activated by a signal received by the radiation plates and a response signal from the wireless IC chip is radiated outward from the radiation plates.
Abstract:
An optical disc includes an electromagnetic coupling module mounted therein. The electromagnetic coupling module includes a wireless IC chip and a feeder circuit substrate in which a feeder circuit including a resonant circuit having a predetermined resonant frequency is disposed. The electromagnetic coupling module is electromagnetically coupled to a reflective film defining a metal thin film of the optical disc, and the reflective film defines an antenna or radiation pattern of the electromagnetic coupling module.
Abstract:
A wireless IC device includes a dielectric body, a metal pattern that is provided on a surface of the dielectric body and that defines a radiator, and a wireless IC element coupled to feeding portions of the metal pattern. A plurality of slits are provided on at least one surface of the dielectric body so as to provide flexibility for the dielectric body.