Abstract:
A composite particle comprising a fluorinated surface and a discontinuous layer of gold nanoparticles disposed on the fluorinated surface, articles that include such particles, and methods of using the particles and the articles for removal of ethylene.
Abstract:
Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
Abstract:
Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
Abstract:
An antenna assembly includes a phased array antenna having an array of spaced apart antenna elements arranged on a horizontal surface and having an axis of symmetry, and a lens disposed on the phased array antenna. The lens substantially covers the antenna elements. The lens includes a substantially planar bottom surface. The bottom surface and tops of the antenna elements define a gap therebetween. For a second vertical plane orthogonal to the horizontal surface and including the axis of symmetry. the antenna assembly steers a beam in a second vertical plane having a 3 dB beam width W1 when steered along a first direction making an angle of less than 10 degrees with a normal to the horizontal surface and a 3 dB beam width W2 when steered along a second direction making an angle of greater than 40 degrees with the normal. W1 and W2 within 35% of each other.
Abstract:
A thermally conductive electromagnetically absorbing material includes a plurality of particles dispersed in a binder. The plurality of particles can have a particle size distribution having at least three peaks, where at least a majority of particles within a half width at half maximum of one, but not the other ones, of the at least three peaks are at least partially coated with an electromagnetically absorbing coating. The plurality of particles can include pluralities of first and second particles where a total number of the first particles is at most 1% of a total number of the first and second particles and where the first particles are more electromagnetically absorbing than the second particles. Films, molded articles and systems including the thermally conductive electromagnetically absorbing material are described.
Abstract:
A PTSM-coated expandable microsphere comprises a polymer shell enclosing an interior volume containing at least one blowing agent. The polymer shell has an outer surface with photothermal susceptor material disposed on at least a portion thereof. If heated to at least one temperature greater than 25° C., each of the expandable microspheres expands, but does not rupture, the polymer shell by a sufficient amount to at least double the interior volume. A markable comprises a substrate and a viewable layer secured thereto. The viewable layer comprises a binder material retaining the PTSM-coated expandable microspheres. A method of marking a markable article comprises imagewise exposing the PTSM-coated expandable microspheres of the markable article to at least sufficient electromagnetic radiation to cause the PTSM-coated expandable microspheres to expand thereby creating a predetermined image. A marked article preparable according to the method is also disclosed.
Abstract:
A polymer matrix composite comprising a porous polymeric network; and a plurality of dielectric particles distributed within the polymeric network structure; wherein the dielectric particles are present in a range from 5 to 98 weight percent, based on the total weight of the dielectric particles and the polymer (excluding the solvent); and wherein the polymer matrix composite has a dielectric constant in a range from 1.05 to 80; and methods for making the same. Polymer matrix composites comprising dielectric particles are useful, for example, as electric field insulators.
Abstract:
An article having anti-microbial effect is provided. The article includes an occlusive layer; a substrate overlaying the occlusive layer, wherein the substrate having two opposing major surfaces; a metal oxide layer overlaying one opposing major surface of the substrate, wherein the metal oxide layer comprises a metal oxide; and a metal layer overlaying the other opposing major surface of the substrate; wherein the substrate is between the metal oxide layer and the metal layer; and wherein electric potential of the metal oxide layer is at least 0.454V more than electric potential of the metal layer.
Abstract:
A wetness sensor includes a self-supporting substrate and an electrically conductive trace carried by the substrate. The trace is patterned to provide at least a portion of a tuned RF circuit, which may be disposed on only one side of the substrate and characterized by an impedance or resistance. The trace is not self-supporting. The substrate is adapted to dissolve, swell, or otherwise degrade when contacted by a target fluid. Such degradation produces a drastic change in the operation of the RF circuit, which can be interpreted by a remote reader as a “wet” condition. Contact of the substrate by the target fluid may change the impedance or resistance of the RF circuit by at least a factor of 5, 10, 100, or 1000, and/or may cause the trace to disintegrate so as to provide the RF circuit with an open circuit, and/or may substantially render the RF circuit inoperative.
Abstract:
A composite particle comprising a fluorinated surface and a discontinuous layer of gold nanoparticles disposed on the fluorinated surface, articles that include such particles, and methods of using the particles and the articles for removal of ethylene.