Abstract:
A process for applying a coating material onto a substrate as a non-uniform patterned layer of coating material, the method including providing a first distribution manifold having a cavity and a first multiplicity of dispensing outlets in fluid communication with the cavity, providing a second distribution manifold having a cavity and a second multiplicity of dispensing outlets in fluid communication with the cavity, creating relative motion between a substrate and the dispensing outlets in a first direction, dispensing a first coating material from the first dispensing outlets while maintaining the relative motion and simultaneously translating the plurality of dispensing outlets in a second direction non-parallel to the first direction, and dispensing a second coating material from the second dispensing outlets while maintaining the relative motion and simultaneously translating the plurality of dispensing outlets in a second direction non-parallel to the first direction. Useful non-uniformly patterned coated articles can be prepared using the process.
Abstract:
A method includes providing an elastomeric stamp including a stamping surface with a first pattern element having a fill factor of 20 to 99 percent and including a continuous region and at least one discontinuous region, the discontinuous region including at least one of: (1) one or more elongated concavities, and (2) one or more interior voids. A second pattern element of the stamping surface has a fill factor of 0.25 to 10 percent, and includes traces with a width from 0.1 micrometers to 50 micrometers. The stamping surface is inked with an ink composition including a functionalizing molecule with a functional group selected to bind to a surface of the ink-receptive material. The inked stamping surface is contacted with an ink-receptive material selected from a sheet or a web for a contact time sufficient to bind the functional group with the surface of the ink-receptive material to form a self-assembled monolayer (SAM) of the functionalizing material.
Abstract:
A method of stencil printing includes printing a layer of non-sag adhesive onto a first substrate, adding topography to the layer of non-sag adhesive, and contacting the layer of non-sag adhesive with a second substrate. The second substrate initially contacts only about 5% or less of exposed surface area of the layer of non-sag adhesive.
Abstract:
A method of modifying a surface of a workpiece comprises providing a system comprising a sealed mixing vessel having an interior chamber wherein the workpiece and working bodies are contained. The sealed mixing vessel is then uniaxially vibrated at a frequency between 15 hertz and 1 kilohertz, and at a vibrational amplitude between about 0.2 cm and 3 cm such that the working bodies impact the surface of the workpiece. The method is useful for shot peening and abrasive finishing the workpiece.
Abstract:
Coating apparatuses and methods are provided for direct coatings with various shapes. The coating apparatus includes a die body with one or more bores. One or more cams are pivotally mounted within the bores and have one or more recessed areas formed into the respective peripheral surfaces thereof. The one or more cams are rotatable within the die body to dynamically, independently vary the width or shape of the respectively dispensed one or more fluid coatings.
Abstract:
A process including positioning a coating head to define a gap between a first external opening in flow communication with a source of a first coating liquid, and a major surface of a substrate; creating relative motion between the first coating head and the substrate; dispensing a pre-determined quantity of the first coating liquid to form a discrete patch in a predetermined position on the substrate's major surface; positioning a second coating head to define a gap between a second external opening in flow communication with a source of a second coating liquid and a major surface of the patch; creating relative motion between the second coating head and the substrate, and dispensing a pre-determined quantity of the second coating liquid to form a discontinuous pattern on the patch's major surface. The first and optionally the second coating liquids exhibit a viscosity as dispensed of at least 1 Pascal-sec.
Abstract:
A method includes unwinding a web material from a support and providing an elastomeric stamp, wherein the stamp includes a base surface and an arrangement of pattern elements extending away from the base surface, and wherein each pattern element has a stamping surface with a lateral dimension of less than about 5 microns and a height with respect to the base surface, and wherein an aspect ratio of the height to the lateral dimension is at least 1.5. The stamping surfaces of the pattern elements are inked with an ink composition including a functionalizing molecule, wherein the functionalizing molecule includes a functional group selected to bind to said substrate material. The stamping surface of the pattern elements is contacted with a major surface of the web material for a print time sufficient to bind the functional group with the web material to form a self-assembled monolayer (SAM) of the functionalizing material on the major surface of the web material according to the arrangement of pattern elements on the stamping surface.
Abstract:
A system, including a moving web of material unwound from a support and a stamp mounted on a roller, wherein the stamp includes a base surface and a continuous, regular array of pattern elements having a trapezoidal cross-sectional shape and extending above the base surface, and wherein the stamping elements each have a substantially planar stamping surface. An inking roller with an inking surface at least periodicially contacts the stamping surface of the stamping elements. The inking surface is impregnated with an ink composition including an organosulfur compound having a thiol functional group selected to bind to a major surface of the web material to form a self-assembled monolayer (SAM) thereon according to the array of pattern elements on the stamping surface.
Abstract:
A process including positioning a coating head to define a gap between a first external opening in flow communication with a source of a first coating liquid, and a major surface of a substrate; creating relative motion between the first coating head and the substrate; dispensing a pre-determined quantity of the first coating liquid to form a discrete patch in a predetermined position on the substrate's major surface; positioning a second coating head to define a gap between a second external opening in flow communication with a source of a second coating liquid and a major surface of the patch; creating relative motion between the second coating head and the substrate, and dispensing a pre-determined quantity of the second coating liquid to form a discontinuous pattern on the patch's major surface. The first and optionally the second coating liquids exhibit a viscosity as dispensed of at least 1 Pascal-sec.