Abstract:
A method and system are described for reducing latency in a peripheral component interconnect express (PCIe) link between a host and an endpoint. In the described embodiments, an interrupt is issued from the endpoint to the host using the PCIe link. Then, while the interrupt is pending at the host, the PCIe link is prevented from entering a power-saving mode with an exit latency greater than a predetermined time period.
Abstract:
Embodiments of an apparatus and method are disclosed that may allow for managing power of a computing system. The apparatus may include a clock generation circuit, a bus interface unit, and a control circuit. The clock generation circuit may be configured to generate multiple clock signals. Each clock signal may provide a timing reference to different functional blocks within a device coupled to the communication bus. The bus interface unit may be configured to receive messages from the device via the communication bus. The messages may include a latency value and a request to activate a low power mode. The control circuit may be configured to deactivate one or more of the multiple clock signals dependent upon the latency value and multiple threshold values.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
A secure ranging system can use a secure processing system to deliver one or more ranging keys to a ranging radio on a device, and the ranging radio can derive locally at the system ranging codes based on the ranging keys. A deterministic random number generator can derive the ranging codes using the ranging key and one or more session parameters, and each device (e.g. a cellular telephone and another device) can independently derive the ranging codes and derive them contemporaneously with their use in ranging operations.
Abstract:
An apparatus, a method, and a system are presented in which the apparatus includes an interface control circuit that may be configured to receive a message including a cryptographic keyword and a policy value. The policy value may include one or more data bits indicative of one or more policies that define allowable usage of the cryptographic keyword. The apparatus also includes a security circuit that may be configured to extract the cryptographic keyword and the policy value from the message, and to apply at least one policy of the one or more policies to usage of the cryptographic keyword in response to a determination that an authentication of the message succeeded.
Abstract:
A method for verifying program flow during execution of a software program in a computer system is disclosed. Program code of the software program includes multiple program instructions and checkpoint data structures, where a given checkpoint data structure is associated with a given program instruction and is linked to at least one other checkpoint data structure. A fault monitor circuit may receive a particular checkpoint data structure and compare the particular checkpoint data structure to a previously received checkpoint data structure that is associated with another program instruction. Based on results of the comparison, the software fault monitor circuit may signal a program flow error.
Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.
Abstract:
A system and method for detecting replay attacks on secure data are disclosed. A system on a chip (SOC) includes a security processor. Blocks of data corresponding to sensitive information are stored in off-chip memory. The security processor uses an integrity data structure, such as an integrity tree, for the blocks. The intermediate nodes of the integrity tree use nonces which have been generated independent of any value within a corresponding block. By using only the nonces to generate tags in the root at the top layer stored in on-chip memory and the nodes of the intermediate layers stored in off-chip memory, an amount of storage used is reduced for supporting the integrity tree. When the security processor detects events which create access requests for one or more blocks, the security processor uses the integrity tree to verify a replay attack has not occurred and corrupted data.
Abstract:
A method and apparatus for protecting boot variables is disclosed. A computer system includes a main processor and an auxiliary processor. The auxiliary processor includes a non-volatile memory that stores variables associated with boot code that is also stored thereon. The main processor may send a request to the auxiliary processor to alter one of the variables stored in the non-volatile memory. Responsive to receiving the request, the auxiliary processor may execute a security policy to determine if the main processor meets the criteria for altering the variable. If the auxiliary processor determines that the main processor meets the criteria, it may grant permission to alter the variable.
Abstract:
In an embodiment, a system is provided in which the private key is managed in hardware and is not visible to software. The system may provide hardware support for public key generation, digital signature generation, encryption/decryption, and large random prime number generation without revealing the private key to software. The private key may thus be more secure than software-based versions. In an embodiment, the private key and the hardware that has access to the private key may be integrated onto the same semiconductor substrate as an integrated circuit (e.g. a system on a chip (SOC)). The private key may not be available outside of the integrated circuit, and thus a nefarious third party faces high hurdles in attempting to obtain the private key.