Abstract:
A porous shaped catalyst support body comprising at least 85% by weight of alpha-alumina, wherein the support has a total pore volume in the range from 0.5 to 2.0 mL/g as determined by mercury porosimetry, and a pore structure characterized by a geometric tortuosity τ in the range from 1.0 to 2.0; and an effective diffusion parameter η in the range from 0.060 to 1.0; wherein geometric tortuosity τ and effective diffusion parameter η are determined by image analysis algorithms from computer-assisted 3D reconstructions of focused ion beam scanning electron microscope analyses. The structure of the support has a high total pore volume, such that impregnation with a large amount of silver is possible, while the surface area is kept sufficiently high in order to assure optimal dispersion of the catalytically active species, especially metal species. The support has a pore structure that leads to a maximum rate of mass transfer within the support. The invention also relates to a shaped catalyst body for preparation of ethylene oxide by gas phase oxidation of ethylene, comprising at least 15% by weight of silver, based on the total weight of the catalyst, deposited on a porous shaped catalyst support body as described above. The invention further relates to a process for producing the shaped catalyst body, in which a) a porous shaped catalyst support body as described above is impregnated with a silver impregnation solution, preferably under reduced pressure; and the impregnated porous shaped catalyst support body is optionally subjected to drying; and b) the impregnated porous shaped catalyst support body is subjected to a heat treatment; wherein steps a) and b) are optionally repeated. The invention also relates to a process for preparing ethylene oxide by gas phase oxidation of ethylene, comprising the reaction of ethylene and oxygen in the presence of a shaped catalyst body according to claim 11.
Abstract:
A three-dimensional porous catalyst, catalyst carrier or absorbent structure of stacked strands of catalyst, catalyst carrier or absorbent material, composed of layers of spaced-apart parallel strands, wherein parallel strands within a layer are arranged in groups of two or more closely spaced-apart, equidistant strands separated by a small distance, wherein the groups of equidistant strands are separated from adjacent strands or adjacent groups of strands by a larger distance.
Abstract:
A process for the continuous production of either acrolein or acrylic acid as the target product from propene comprising a catalyzed gas phase partial oxidation of propene to yield a product gas containing the target product, transferring the target product in a separating zone from the product gas into the liquid phase and conducting out of the separating zone a stream of residual gas the major portion of which is returned into the partial oxidation and the remaining portion of said stream is purged from the process as off-gas from which synthesis gas can be produced or which can be added to synthesis gas produced otherwise.
Abstract:
A three-dimensional porous catalyst, catalyst carrier or absorbent monolith of stacked strands of catalyst, catalyst carrier or absorbent material, composed of alternating layers of linear spaced-apart parallel strands, wherein the strands in alternating layers are oriented at an angle to one another, wherein the distance between inner spaced-apart parallel strands is larger than the distance between outer spaced-apart parallel strands in at least a part of the layers of the monolith.
Abstract:
Process for producing shaped bodies of catalysts, catalyst supports or adsorbents by microextrusion in which a pasty extrusion composition of a shaped body precursor material is extruded through a movable microextrusion nozzle and through movement of the microextrusion nozzle a shaped body precursor is constructed in layerwise fashion and the shaped body precursor is subsequently subjected to a thermal treatment, wherein for construction of each shaped body precursor the pasty extrusion composition is simultaneously extruded through a plurality of microextrusion nozzles.
Abstract:
The invention relates to a process for preparing 1,3-butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising butanes, 1-butene, 2-butene and isobutene, with or without 1,3-butadiene, from a fluid catalytic cracking plant; B) removing isobutene from the input gas stream a, giving a stream b comprising butanes, 1-butene and 2-butene, with or without 1,3-butadiene; C) feeding the stream b comprising butanes, 1-butene and 2-butene and optionally an, oxygenous gas and optionally water vapor into at least one dehydrogenating zone and dehydrogenating 1-butene and 2-butene to 1,3-butadiene, giving a product gas stream c comprising 1,3-butadiene, butanes, 2-butene and water vapor, with or without oxygen, with low-boiling hydrocarbons, with high-boiling secondary components, with or without carbon oxides and with or without inert gases; D) cooling and compressing the product gas stream c, giving at least one aqueous condensate stream d1 and a gas stream d2 comprising 1,3-butadiene, butanes, 2-butene and water vapor, with or without oxygen, with low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases; Ea) removing uncondensable and low-boiling gas constituents comprising low-boiling hydrocarbons, with or without oxygen, with or without carbon oxides and with or without inert gases, as gas stream e2 from the gas stream d2 by absorbing the C4 hydrocarbons comprising 1,3-butadiene, butanes and 2-butene in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream e2, and Eb) subsequently desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 hydrocarbon stream e1; F) separating the C4 hydrocarbon stream e1 by extractive distillation with a 1,3-butadiene-selective solvent into a stream f1 comprising 1,3-butadiene and the selective solvent and a stream f2 comprising butanes and 2-butene, wherein at least 90% of the 1-butene present in stream b is converted in step C) and a product stream f2 comprising butanes and 2-butene is obtained in step F.
Abstract:
A process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream comprising n-butenes; B) feeding the input gas stream comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream; Ca) cooling the product gas stream by contacting with a circulating cooling medium in at least one cooling zone; Cb) compressing the cooled product gas stream in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1; E) separating the C4 product stream d1 by extractive distillation; F) distilling the stream e1 into a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene; G) removing a portion of the aqueous phase of the cooling medium which circulates in step Ca) as aqueous purge stream g; H) distillatively separating the aqueous purge stream g into a fraction h1 and a fraction h2 depleted of organic constituents.
Abstract:
The present invention relates to the use of gamma iron(III) oxide (γ-Fe2O3) containing particles for the prevention of biofouling and/or growth of microorganisms. Furthermore, it relates to a method for preventing biofouling of a substrate and to a method of imparting biocidal properties to the surface of a substrate.
Abstract:
A process for preparing butadiene from n-butenes, comprising the steps of A) providing an input gas stream a1 comprising n-butenes; B) feeding the input gas stream a1 comprising n-butenes, an oxygenous gas and an oxygenous cycle gas stream a2 into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b and optionally at least partly removing high-boiling secondary components and steam, giving a product gas stream b′, Cb) compressing and cooling the product gas stream b′ in at least one compression and cooling stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, steam, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, Da) absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an aromatic hydrocarbon solvent as an absorbent and removing uncondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, any carbon oxides, aromatic hydrocarbon solvent and any inert gases as gas stream d2 from the gas stream c2, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1, Db) at least partly recycling the gas stream d2 as cycle gas stream a2 into the oxidative dehydrogenation zone, wherein the content of aromatic hydrocarbon solvent in the cycle gas stream a2 is limited to less than 1% by volume.