Abstract:
Process for increasing the molar mass of polyalkylenepolyamines by homogeneously catalyzed alcohol amination, which comprises carrying out a reaction of the polyalkylenepolyamines in a reactor with elimination of water in the presence of a homogeneous catalyst and removing the water of reaction from the reaction system. Polyalkylenepolyamines obtainable by such processes, and polyalkylenepolyamines comprising hydroxyl groups, secondary amines or tertiary amines. Uses of such polyalkylenepolyamines as adhesion promoters for printing inks, adhesion promoters in composite films, cohesion promoters for adhesives, crosslinkers/curing agents for resins, primers for paints, wet-adhesion promoters for emulsion paints, complexing agents and flocculating agents, penetration assistants in wood preservation, corrosion inhibitors, immobilizing agents for proteins and enzymes.
Abstract:
The invention relates to a method of performing a chemical reaction under elevated pressure. It is suggested that the method comprises the steps of pressurizing a first vessel (3) and a second vessel (5) with reactant-containing liquid and gas to a predetermined pressure, providing reaction conditions in one of the vessels (3, 5) such that the chemical reaction is effected and a product-containing liquid is obtained, withdrawing liquid from the respective vessel (3, 5) as reaction product when a predetermined amount of reaction product has formed, preferably after the chemical reaction in the respective vessel (3, 5) has concluded, and synchronously supplying reactant-containing liquid to the respective other vessel (3, 5), wherein the first and second vessels (3, 5) are in fluid communication by way of a gas communication passage (27). The invention also relates to an apparatus and use thereof for performing said chemical reaction.
Abstract:
The present invention relates to the use of a transition metal catalyst TMC1, which comprises a transition metal M selected from metals of groups 7, 8, 9 and 10 of the periodic table of elements according to IUPAC and a tetradentate ligand of formula I wherein R1 are identical or different and are each an organic radical having from 1 to 40 carbon atoms, and R2 are identical or different and are each an organic radical having from 1 to 40 carbon atoms, as catalyst in processes for formation of compounds comprising at least one carboxylic acid ester functional group —O—C(═O)— starting from at least one primary alcohol and/or hydrogenation of compounds comprising at least one carboxylic acid ester functional group —O—C(═O)—. The present invention further relates to a process for hydrogenation of a compound comprising at least one carboxylic acid ester functional group —O—C(═O)—, to a process for the formation of a compound comprising at least one carboxylic acid ester functional group —O—C(═O)— by dehydrogenase coupling of at least one primary alcohol with a second alcoholic OH-group, to a transition metal complex comprising the tetradentate ligand of formula I and to a process for preparing said transition metal complex.
Abstract:
The invention relates to a method of performing a chemical reaction under elevated pressure. It is suggested that the method comprises the steps of pressurizing a first vessel (3) and a second vessel (5) with reactant-containing liquid and gas to a predetermined pressure, providing reaction conditions in one of the vessels (3, 5) such that the chemical reaction is effected and a product-containing liquid is obtained, withdrawing liquid from the respective vessel (3, 5) as reaction product when a predetermined amount of reaction product has formed, preferably after the chemical reaction in the respective vessel (3, 5) has concluded, and synchronously supplying reactant-containing liquid to the respective other vessel (3, 5), wherein the first and second vessels (3, 5) are in fluid communication by way of a gas communication passage (27). The invention also relates to an apparatus and use thereof for performing said chemical reaction.
Abstract:
The present invention is directed towards a catalyst which is obtainable by contacting in situ a ruthenium precursor and a phenol derivative. Furthermore, the present invention is directed towards the use of said catalyst in transfer hydrogenation reactions. In particular, the present invention is directed to a method for preparing menthone starting from isopulegol.
Abstract:
The present invention relates to a method for the regioselective hydroformylation of polyunsaturated acyclic hydrocarbons, which are 1, 3 butadienes, which, in the 2 position, bear a saturated or monounsaturated or polyunsaturated acyclic hydrocarbon radical. The present invention also relates to the production of secondary products of these hydroformylation products, especially of ambrox.
Abstract:
A process for preparing acrylic acid from ethylene oxide and carbon monoxide, in which ethylene oxide is carbonylated in an aprotic solvent with carbon monoxide in the presence of a cobalt catalyst system to give poly-3-hydroxypropionate, the cobalt content in the poly-3-hydroxypropionate formed is reduced with the aid of water and/or an aqueous solution as a precipitation and/or wash liquid, and the poly-3-hydroxypropionate is subsequently split by thermolysis to give acrylic acid.
Abstract:
The present invention to a process for preparing 2-alkenals of the formula I in which R1 is selected from hydrogen and C1-C4-alkyl; and R2 is selected from hydrogen, C1-C12-alkyl, C2-C12-alkenyl, C4-C8-cycloalkyl and C6-C10-aryl, wherein C1-C12-alkyl and C1-C12-alkenyl may be substituted with C5-C7-cycloalkyl or C5-C7-cylcoalkenyl; comprising dehydrogenating an alkenol of the formula II, an alkenol of the formula III or a mixture thereof, wherein R1 and R2 are each as defined above, wherein the alkenol II, the alkenol III or a mixture thereof is brought into contact with a catalytic system comprising at least one ligand and a metal compound selected from ruthenium(II) compounds and iridium(I) compounds, and wherein the hydrogen formed during the dehydrogenation is removed from the reaction mixture by: v) reaction with a reoxidant selected from C3-C12-alkanones, C4-C9-cycoalkanones, benzaldehyde and mixtures thereof; and/or vi) purely physical means.
Abstract:
The present invention relates to a process for preparing carboxylic acid esters, comprising the reaction of at least one primary monoalcohol or of a mixture of a primary monoalcohol and at least one alcohol different therefrom in the presence of a transition metal carbene complex catalyst K which has, as central atom M, at least one transition metal atom of group 8, 9 or 10 of the Periodic Table of the Elements (IUPAC) and at least one monodentate N-heterocyclic carbene ligand, in the presence of a base, wherein the catalyst K is prepared by reacting a transition metal compound V which has at least one transition metal atom of group 8, 9 or 10 of the Periodic Table of the Elements (IUPAC), but no carbene ligand, with an imidazolium salt in the presence of the primary monoalcohol and the base, the reaction being carried out without dilution.
Abstract:
The invention relates to a process for preparing primary amines by alcohol amination of alcohols with ammonia with the elimination of water, where the alcohol amination is carried out under homogeneous catalysis in the presence of at least one complex catalyst which comprises ruthenium and at least one at least bidental donor ligand, but no anionic ligands.