Abstract:
An information management system according to certain aspects may determine whether snapshot operations will work prior to executing them. The system may check various factors or parameters relating to a snapshot storage policy to verify whether the storage policy will work at runtime without actually executing the policy. Some examples of factors can include: availability of primary storage devices for which a snapshot should be obtained, availability of secondary storage devices, license availability for snapshot software, user credentials for connecting to primary and/or second storage devices, available storage capacity, connectivity to storage devices, etc. The system may also check whether a particular system configuration is supported in connection with snapshot operations. The result of the determination can be provided in the form of a report summarizing any problems found with the snapshot storage policy. The report can include recommended courses of action or solutions for resolving any identified issues.
Abstract:
Virtualization sprawl can lead to virtual machines with no designated periodic backup. If the data associated with these unprotected virtual machines is not backed up, it cannot be restored if needed, leading to system failures. A data storage system identifies and protects the unprotected virtual machines. For instance, the system compares a list of virtual machines with a list of computing devices having a designated backup policy in the data storage system and determines which of the virtual machines are unprotected. The system further automatically categorizes the unprotected virtual machines, identifies those unprotected virtual machines that remain uncategorized, and applies a default backup policy to the uncategorized and unprotected virtual machines to provide protected virtual machines.
Abstract:
A system for archiving data objects using secondary copies is disclosed. The system creates one or more secondary copies of primary copy data that contains multiple data objects. The system maintains a first data structure that tracks the data objects for which the system has created secondary copies and the locations of the secondary copies. To archive data objects in the primary copy data, the system identifies data objects to be archived, verifies that previously-created secondary copies of the identified data objects exist, and replaces the identified data objects with stubs. The system maintains a second data structure that both tracks the stubs and refers to the first data structure, thereby creating an association between the stubs and the locations of the secondary copies.
Abstract:
Software, firmware, and systems are described herein that permit an organization to dock previously-utilized, limited-feature data management modules with a full-featured data management system. By docking limited-feature data management modules to a full-featured data management system, metadata and data from the various limited-feature data management modules can be integrated and utilized more efficiently and effectively. Moreover, additional data management features can be provided to users after a more seamless transition.
Abstract:
A data storage system protects data identified for deletion which has been created or modified between scheduled data backups. For instance, the system monitors data operations and when the data operation is a delete, the system determines whether the data identified for deletion has been protected by a backup operation. Data that has not been backed up, such as newly created data, is copied to temporary storage before deletion. When the data has been protected, the system determines whether the data has been modified after the backup operation. Data modified after the backup operation is copied to temporary storage before deletion.
Abstract:
According to certain aspects, an information management cell with failover management capability can include secondary storage computing devices configured to conduct primary data from a primary storage device(s) to a secondary storage device(s) during secondary copy operations, at the direction of a remote storage manager, wherein a first secondary storage computing device implements a failover storage manager configured to, in the event of a loss of connectivity between the cell and the remote storage manager: access a stored storage policy; initiate first and secondary copy operations according to the storage policy in which the first and second secondary storage computing devices are each involved in the creation of a first and second secondary copies; and subsequent to reestablishment of connectivity between the cell and the remote storage manager, transmit synchronization information associated with the secondary copy operations to the remote storage manager.
Abstract:
Systems and methods integrate disparate backup devices with a unified interface. In certain examples, a management console manages data from various backup devices, while retaining such data in its native format. The management console can display a hierarchical view of the client devices and/or their data and can further provide utilities for processing the various data formats. A data structure including fields for storing both metadata common to the client device data and value-added metadata can be used to mine or process the data of the disparate client devices. The unified single platform and interface reduces the need for multiple data management products and/or customized data utilities for each individual client device and provides a single pane of glass view into data management operations. Integrating the various types of storage formats and media allows a user to retain existing storage infrastructures and further facilitates scaling to meet long-term management needs.
Abstract:
A system and method for communicating, browsing, verifying and routing data in storage operation systems using network attached storage devices is provided. In some embodiments, the system may include a management module and a media management component connected to the management server, which interoperate with network attached storage devices to provide the communicating, browsing, verifying and routing functions.
Abstract:
Methods and systems are described for performing storage operations on electronic data in a network. In response to the initiation of a storage operation and according to a first set of selection logic, a media management component is selected to manage the storage operation. In response to the initiation of a storage operation and according to a second set of selection logic, a network storage device to associate with the storage operation. The selected media management component and the selected network storage device perform the storage operation on the electronic data.
Abstract:
Software, firmware, and systems are described herein that permit an organization to dock previously-utilized, limited-feature data management modules with a full-featured data management system. By docking limited-feature data management modules to a full-featured data management system, metadata and data from the various limited-feature data management modules can be integrated and utilized more efficiently and effectively. Moreover, additional data management features can be provided to users after a more seamless transition.