Abstract:
A filter package comprising an array of piezoelectric films sandwiched between an array of upper electrodes and lower electrodes: the individual piezoelectric films and the upper electrodes being separated by a passivation material; the lower electrode being coupled to an interposer with a first cavity between the lower electrodes and the interposer; the filter package further comprising a silicon wafer of known thickness attached over the upper electrodes with an array of upper cavities between the silicon wafer and a silicon cover; each upper cavity aligned with a piezoelectric film in the array of piezoelectric films, the upper cavities having side walls comprising the passivation material.
Abstract:
A method of fabricating an RF filter comprising an array of resonators, the method comprising the steps of: (a) Obtaining a removable carrier with release layer; (b) Growing a piezoelectric film on a removable carrier; (c) Applying a first electrode to the piezoelectric film; (d) Obtaining a backing membrane on a cover, with or without prefabricated cavities between the backing film and cover; (e) Attaching the backing membrane to the first electrode; (f) Detaching the removable carrier; (g) Measuring and trimming the piezoelectric film as necessary; (h) Selectively etching away the piezoelectric layer to fabricate discrete resonator islands; (i) Etching down through coatings backing membrane, silicon dioxide and into silicon handle to form trenches; (j) Applying passivation layer into the trenches and around the piezoelectric islands; (k) Depositing a second electrode layer over the dielectric and piezoelectric film islands; (l) Applying connections for subsequent electrical coupling to an interposer; (m) Selectively remove second electrode material leaving coupled resonator arrays; (n) Create gasket around perimeter of the resonator array; (o) Thinning down cover of handle to desired thickness; (p) Optionally fabricating cavities between the silicon membrane and handle; (q) Dicing the wafer into flip chip single unit filter arrays; (r) Obtaining an interposer; (s) Optionally applying a dam to the interposer surface to halt overfill flow; (t) Coupling the flip chip single unit filter array to pads of the interposer by reflow of the solder cap; (u) Encapsulating with polymer overfill; and (v) Singulating into separate filter modules.
Abstract:
A multilayer electronic support structure including at least one pair of adjacent feature layers extending in an X-Y plane that are separated by a via layer; said via layer comprising a dielectric material that is sandwiched between the two adjacent feature layers and at least one constructional element through the dielectric material spanning between said pair of adjacent feature layers in a Z direction perpendicular to the X-Y plane; wherein said at least one constructional element is characterized by having a long dimension in the X-Y plane that is at least 3 times as long as a short dimension in the X-Y plane and wherein the at least one constructional element is fully encapsulated within the dielectric material and is electrically isolated from its surrounding.
Abstract:
A multilayer electronic support structure comprising at least one pair of adjacent feature layers extending in an X-Y plane that are separated by a via layer; said via layer comprising a dielectric material that is sandwiched between the two adjacent feature layers and at least one one non-cylindrical via post that couples said pair of adjacent feature layers through the dielectric material in a Z direction perpendicular to the X-Y plane; wherein said at least one non-cylindrical via post is characterized by having a long dimension in the X-Y plane that is at least 3 times as long as a short dimension in the X-Y plane.
Abstract:
A multilayer electronic structure comprising a plurality of layers extending in an X-Y plane consisting of a dielectric material surrounding metal via posts that conduct in a Z direction perpendicular to the X-Y plane, wherein at least one multilayered hole crosses at least two layers of the plurality of layers and comprises at least two hole layers in adjacent layers of the multilayer composite electronic structure, wherein the at least two holes in adjacent layers have different dimensions in the X-Y plane, such that a perimeter of the multilayered hole is stepped and where at least one hole is an aperture to a surface of the multilayer electronic structure.
Abstract:
A process for alignment a subsequent layer over a previous layer comprising metal features or vias encapsulated in dielectric material comprising the steps of: thinning and planarizing the dielectric material to create a smooth surface of dielectric material and coplanar exposed ends of the via posts; imaging the smooth surface; discerning the position of the end of at least one feature, and using the position of the end of at least one via feature as a registration mark for aligning the subsequent layer.
Abstract:
A laminated multilayer electronic support structure comprising a dielectric with integral vias and feature layers and further comprising a planar metal core characterized by a thickness of less than 100 microns.
Abstract:
A process for manufacturing a chip carrier substrate, the process including the steps of providing a first layer of copper conductor on a substrate, forming a first layer of barrier metal on the first layer of copper conductor, forming a layer of aluminum on the first layer of barrier metal, forming a second barrier metal on the aluminum layer, patterning the top barrier metal in the form of studs, anodizing the aluminum unprotected by the top barrier metal, removing the aluminum oxide and patterning the first copper layer, removing all the exposed barrier metal; surrounding the studs and the copper conductor with a polymeric dielectric; polishing the polymeric dielectric to expose the studs; and forming a second layer of copper conductor on the planar polymeric dielectric.
Abstract:
A process for manufacturing an electronic interconnect structure, the process including the steps of depositing an adhesion metal layer over a dielectric material surface having at least one exposed aluminum surface; depositing a barrier metal layer over the adhesion metal layer; depositing a first layer of aluminum over the barrier metal layer; depositing an intermediate barrier metal layer over the first layer of aluminum; applying a photoresist layer on top of the intermediate barrier metal layer; exposing and developing the photoresist layer; removing the exposed barrier metal and photoresist layer, leaving a layer of barrier metal over the aluminum layer; converting those portions of the layer of aluminum which are not covered by barrier metal to a porous aluminum oxide by porous anodization; removing the porous aluminum oxide; and removing the exposed barrier metal and adhesion metal layers to leave exposed patterned aluminum, and an electronic interconnect structure manufactured by this method.