Polarization independent optical receiver

    公开(公告)号:US11646802B2

    公开(公告)日:2023-05-09

    申请号:US16891008

    申请日:2020-06-02

    CPC classification number: H04B10/6151 H04B10/2572

    Abstract: Systems and methods are provided for receiving an optical signal from an optical fiber, including: coupling via an optical coupler the optical signal from an optical fiber into first and second waveguides, wherein the optical signal comprises TE and TM polarized optical signals and the optical coupler couples the TE polarized optical signal into the first waveguide and the TM polarized optical signal into the second waveguide; equalizing the TE and TM polarized optical signals from the coupler to equalize optical power levels of the TE and TM polarized optical signals; optically combining the equalized TE and TM polarized optical signals; and transmitting the combined optical signal to a photodetector.

    Avalanche photodiode and an optical receiver having the same

    公开(公告)号:US11502215B2

    公开(公告)日:2022-11-15

    申请号:US17249192

    申请日:2021-02-23

    Abstract: Examples described herein relate to an avalanche photodiode (APD) and an optical receiver including the APD. The APD may include a substrate and a photon absorption region disposed on the substrate. The substrate may include a charge carrier acceleration region under the photon absorption region; a charge region adjacent to the charge carrier acceleration region; and a charge carrier multiplication region adjacent to the charge region. The charge carrier acceleration region, the charge region, and the charge carrier multiplication region are laterally formed in the substrate. When a biasing voltage is applied to the optoelectronic device, photon-generated free charge carriers may be generated in the photon absorption region and are diffused into the charge carrier acceleration region. The charge carrier acceleration region is configured to accelerate the photon-generated free charge carriers prior to the photon-generated free charge carriers entering into the charge region and undergoing impact ionization in the charge carrier multiplication region.

    Noise-canceling transimpedance amplifier (TIA) systems

    公开(公告)号:US10680566B2

    公开(公告)日:2020-06-09

    申请号:US15768864

    申请日:2015-10-23

    Abstract: One embodiment describes a transimpedance amplifier (TIA) system. The system includes an inverter TIA stage interconnecting an input node and an output node and configured to invert an input signal at the input node to provide a first inverted signal component at the output node. The system also includes a noise-canceling inverter stage arranged in parallel with the inverter stage and being configured to invert the input signal to provide a second inverted signal component and to invert noise from the input node. Thus, the first and second inverted signal components constructively combine at the output node and the noise is substantially mitigated at the output node.

    Hybrid photonic device structures
    29.
    发明授权

    公开(公告)号:US09927572B1

    公开(公告)日:2018-03-27

    申请号:US15397903

    申请日:2017-01-04

    Abstract: Examples include hybrid silicon photonic device structures. Some examples include a method of integrating a photodetector with a photonic device on a silicon wafer to make a hybrid silicon photonic device structure. A dielectric layer is established on the silicon wafer. A pit is formed in a portion of the dielectric layer and the silicon wafer, wherein a bottom of the pit is silicon. A germanium layer is grown in the pit such that a top of the germanium layer is lower than a top of the silicon wafer. The germanium layer comprises the photodetector. A photonic device material that comprises the photonic device is bonded to the silicon wafer without planarization of the silicon wafer.

    RING RESONATOR WITH INTEGRATED DETECTOR FOR MONITORING LIGHT

    公开(公告)号:US20230014190A1

    公开(公告)日:2023-01-19

    申请号:US17305892

    申请日:2021-07-16

    Abstract: Examples described herein relate to a ring resonator. The ring resonator may include an annular waveguide having a waveguide base and a waveguide core narrower than the waveguide base. Further, the ring resonator may include an outer contact region comprising a first-type doping and disposed annularly and at least partially surrounding an outer annular surface of the waveguide base. Furthermore, the ring resonator may include an inner contact region comprising a second-type doping and disposed annularly contacting an inner annular surface of the waveguide base. Moreover, the ring resonator may include an annular detector region disposed annularly at a distance from and covering at least a portion of a surface of the waveguide core and contacting the outer contact region.

Patent Agency Ranking