Abstract:
A plastically deformable element of a microelectromechanical device is strained so as to improve the lifetime of the microelectromechanical device. The element of the device can be strained by deforming the element into a deformed state and holding the element at the deformed state for a particular time period so as to acquire an amount of plastic deformation. The operation states of the device are calibrated according to the states before straining and the acquired plastic deformation. After then, the device is operated in the calibrated states.
Abstract:
The present invention discloses a method for processing a deformable element of a microstructure for reducing the plastic deformation by oxidizing the deformable element. The method of the present invention can be performed at a variety of stages of the fabrication and packaging processes.
Abstract:
Disclosed herein is a microelectromechanical device having a structural layer composed of a low stress TiNx layer and a method of making the same.
Abstract:
Disclosed herein is a microelectromechanical device having a structural layer composed of a low stress TiNx layer and a method of making the same.
Abstract:
A plastically deformable element of a microelectromechanical device is strained so as to improve the lifetime of the microelectromechanical device. The element of the device can be strained by deforming the element into a deformed state and holding the element at the deformed state for a particular time period so as to acquire an amount of plastic deformation. The operation states of the device are calibrated according to the states before straining and the acquired plastic deformation. After then, the device is operated in the calibrated states.
Abstract:
The present invention discloses a method for processing a deformable element of a microstructure for reducing the plastic deformation by oxidizing the deformable element. The method of the present invention can be performed at a variety of stages of the fabrication and packaging processes.
Abstract:
Disclosed herein is a microelectromechanical device having a structural layer composed of a low stress TiNx layer and a method of making the same.
Abstract:
A microelectromechanical device with a plastically deformable element of is exposed to illumination light so as to elongate the lifetime of the device on the customer side.
Abstract:
An isolative substrate edge area processing method and apparatus is described. The apparatus has an isolator for isolating and processing by dry chemical technique a portion of a substrate including a substrate edge region. The isolator has nozzles for directing a flow of reactive species towards the edge area of the substrate and a purge plenum for biasing flow of reactive species towards an exhaust plenum while the substrate rotates on a chuck. Tuned flow control prevents migration of reactive species and reaction byproducts out of the processing area. A method for processing a substrate with the isolator involves directing a flow of reactive species at an angle towards an edge area of the substrate while forming a boundary around the processing area with flow control provided by the purge plenum, and exhaust plenum.
Abstract:
A microstructure is packaged with a device substrate of the microstructure being attached to a package substrate. For dissipating possible deformation of the microstructure, which may result in device failure or quality degradation of the microstructure, an adhesive material comprising a compliant adhesive component is applied and positioned between the device substrate and package substrate.