Abstract:
An electrical cable assembly is provided with an electrical connector sized to be received into an electrical outlet. A cable is in electrical communication with the electrical connector. A lockable connector is in electrical communication with the cable. An adapter receptacle is sized to receive the lockable connector for electrical communication with the lockable connector. The lockable connector is lockable within the adapter receptacle. A vehicle connector assembly is in electrical communication with the adapter receptacle and is sized to be received by a vehicle receptacle to convey current to the vehicle receptacle.
Abstract:
An assembly includes a metallic housing, an electromagnetic (EM) device, and a bobbin in which the EM device is supported. The bobbin has a non-metallic, inner bobbin body, a non-metallic, outer bobbin body, and a metallic shield sandwiched between the inner and outer bobbin bodies. The EM device and the bobbin are mounted in the housing with the bobbin being between the EM device and the housing for heat from the EM device to thermally conduct through the inner and outer bobbin bodies and the shield to the housing while the shield shields noise of the EM device from the housing.
Abstract:
A system and method are disclosed for controlling movement of a seat in a vehicle. A sensor assembly includes a sensor configured to sense a presence of an object and to generate an output signal representing a proximity of the object to the sensor. A control unit is configured to receive the sensor output signal and to generate a control signal for use in controlling movement of the seat.
Abstract:
An EVSE assembly convertible between a charge cord and a charge station includes a charge unit having a connector of a first type, a charge station sub-assembly having a connector of a second type, and a cord set sub-assembly having a connector of the second type. The connector of the charge station sub-assembly is hard-wired to an (240V) electrical circuit. The charge unit electrically connects to the charge station sub-assembly while the connectors of the charge unit and the charge station sub-assembly are connected to one another to thereby form a (240V) charge station. The cord set sub-assembly further includes a power plug connectable to (one of a 120V and 240V) electrical outlet. The charge unit electrically connects to the cord set sub-assembly while the connectors of the charge unit and the cord set sub-assembly are connected to one another to thereby form a (120V or 240V) cord set.
Abstract:
An electrical cable assembly is provided with an electrical connector sized to be received into an electrical outlet. A cable is in electrical communication with the electrical connector. A lockable connector is in electrical communication with the cable. An adapter receptacle is sized to receive the lockable connector for electrical communication with the lockable connector. The lockable connector is lockable within the adapter receptacle. A vehicle connector assembly is in electrical communication with the adapter receptacle and is sized to be received by a vehicle receptacle to convey current to the vehicle receptacle.
Abstract:
A vehicle seat assembly has a vehicle seat with a seat base and a seat back. The vehicle seat has at least one actuator configured to move one of the seat back and seat base along a path between a first position and a second position. A sensor has a generally planar surface defining a sensing area. A controller is in communication with the actuator and the sensor. The controller is configured to, in response to receiving a sliding input on the sensing area, control the at least one actuator to move the one of the seat back and seat base along the path.
Abstract:
A ground monitor is disclosed. The ground monitor may be configured to conduct a ground continuity test based on a determined ground resistance. The ground monitor may be operable to determine the ground resistance as a function of a voltage differential detected during application of a test current.
Abstract:
A direct current/alternating current (DC/AC) inverter system includes a primary DC-DC converter that receives an input DC voltage and a secondary DC/AC inverter. The primary DC-DC converter includes a plurality of switching networks and a plurality of transformers having a plurality of primary windings and a plurality of secondary windings. Characteristically, the plurality of secondary windings is arranged in series to provide a first output and a second output. A resonant LC circuit is connected in series with the first output and the second output. A rectifier rectifies an AC voltage between the first output and the second output to form a first rectified output. The secondary DC/AC inverter receives the first rectified output or filtered output thereof and provides a high voltage AC output. A controller mediates switching of the plurality of switching networks.
Abstract:
A method and system involve a controller receiving from a phone an orientation signal indicative of an orientation of the phone and adjusting an object according to the orientation of the phone. The controller is configured to select one of the parts of the object according to an initial orientation of the phone and adjust the selected part of the object in correspondence with the orientation of the phone as the orientation of the phone changes. The controller is configured to receive from the phone a control signal indicative of a user input to the phone and to adjust the object according to the user input. The object may be a vehicle seat having a first part in the form of a seat bottom and a second part in the form of a seat back. The object may be a vehicle sunroof.
Abstract:
A method and system involve a controller receiving from a phone an orientation signal indicative of an orientation of the phone and adjusting an object according to the orientation of the phone. The controller is configured to select one of the parts of the object according to an initial orientation of the phone and adjust the selected part of the object in correspondence with the orientation of the phone as the orientation of the phone changes. The controller is configured to receive from the phone a control signal indicative of a user input to the phone and to adjust the object according to the user input. The object may be a vehicle seat having a first part in the form of a seat bottom and a second part in the form of a seat back. The object may be a vehicle sunroof.