Abstract:
An electric vehicle charging system in described that includes an electrical energy source that includes a base with a plurality of electrical signal connectors to receive a first electrical signal, a second electrical signal and a ground signal, an adapter having a plurality of outlet connectors configured to electrically connect to at least some of the plurality of electrical signal connectors, wherein the adapter can be placed in a plurality of positions on the base to correctly orient the base to any of plurality of outlet connector orientations, and a locking ring adapted to engage the base to removable fix the adapter to the base in one of the four positions. The system can include a thermistor assembly to sense thermal energy in the source and if thermal energy exceeds a threshold to output a signal. The system can include a charging cord for an electric vehicle having a proper orientation when engaging the source, wherein the adapter is in a correct orientation with the base being in the proper orientation when connected to the socket-outlet.
Abstract:
An EVSE assembly convertible between a charge cord and a charge station includes a charge unit having a connector of a first type, a charge station sub-assembly having a connector of a second type, and a cord set sub-assembly having a connector of the second type. The connector of the charge station sub-assembly is hard-wired to an (240V) electrical circuit. The charge unit electrically connects to the charge station sub-assembly while the connectors of the charge unit and the charge station sub-assembly are connected to one another to thereby form a (240V) charge station. The cord set sub-assembly further includes a power plug connectable to (one of a 120V and 240V) electrical outlet. The charge unit electrically connects to the cord set sub-assembly while the connectors of the charge unit and the cord set sub-assembly are connected to one another to thereby form a (120V or 240V) cord set.
Abstract:
A spring and damper system for a circuit board includes a spring arrangement having a plurality of compression springs. Each of the compression springs has a contact portion and two ends which are disposed away from their respective contact portion. Each of a plurality of dampers is disposed on a respective one of the ends of the compression springs and configured to contact a portion of the circuit board.
Abstract:
A connector subassembly is provided with a terminal housing portion, an electrical components housing portion, a strain relief and a seal. A first retainer is provided on the terminal housing portion and is sized to be retained within a handle housing outlet end. At least one socket extends from the receptacle housing portion forward of the handle housing outlet end. A plurality of conductive terminals is oriented within the at least one socket. A cord extends through a proximal end of the electrical components housing portion through a retaining feature and seal, in electrical communication with the plurality of conductive terminals on the outlet end within the terminal housing portion.
Abstract:
An electrical terminal assembly is provided with at least one blade having a distal end that is sized to be received within an electrical outlet. One of a lug and a pair of crimp tabs with distal ends is provided on a proximal end of the at least one blade. A wire is in electrical communication with a vehicle charger. The wire is welded to the lug or received between the pair of crimp tabs with the distal ends of the crimp tabs deformed centrally within the crimp tabs to press the wire against the proximal end of the at least one blade, with the wire welded to the pair of crimp tabs.
Abstract:
An electrical cable assembly is provided with an electrical connector sized to be received into an electrical outlet. A cable is in electrical communication with the electrical connector. A lockable connector is in electrical communication with the cable. An adapter receptacle is sized to receive the lockable connector for electrical communication with the lockable connector. The lockable connector is lockable within the adapter receptacle. A vehicle connector assembly is in electrical communication with the adapter receptacle and is sized to be received by a vehicle receptacle to convey current to the vehicle receptacle.
Abstract:
An EVSE assembly convertible between a charge cord and a charge station includes a charge unit having a connector of a first type, a charge station sub-assembly having a connector of a second type, and a cord set sub-assembly having a connector of the second type. The connector of the charge station sub-assembly is hard-wired to an (240V) electrical circuit. The charge unit electrically connects to the charge station sub-assembly while the connectors of the charge unit and the charge station sub-assembly are connected to one another to thereby form a (240V) charge station. The cord set sub-assembly further includes a power plug connectable to (one of a 120V and 240V) electrical outlet. The charge unit electrically connects to the cord set sub-assembly while the connectors of the charge unit and the cord set sub-assembly are connected to one another to thereby form a (120V or 240V) cord set.
Abstract:
An electrical cable assembly is provided with an electrical connector sized to be received into an electrical outlet. A cable is in electrical communication with the electrical connector. A lockable connector is in electrical communication with the cable. An adapter receptacle is sized to receive the lockable connector for electrical communication with the lockable connector. The lockable connector is lockable within the adapter receptacle. A vehicle connector assembly is in electrical communication with the adapter receptacle and is sized to be received by a vehicle receptacle to convey current to the vehicle receptacle.