Abstract:
The present disclosure relates to a method for producing renewable ketones, paraffin waxes, base oil components and alkenes from a feedstock of biological origin, wherein the method includes ketonisation of esters of fatty acids and monohydric alcohols wherein the alcohols have carbon chain length of two or more.
Abstract:
The invention relates to a process for the manufacture of diesel range hydrocarbons wherein a feed is hydrotreated in a hydrotreating step and isomerised in an isomerisation step, and a feed comprising fresh feed containing more than 5 wt % of free fatty acids and at least one diluting agent is hydrotreated at a reaction temperature of 200-400° C., in a hydrotreating reactor in the presence of catalyst, and the ratio of the diluting agent/fresh feed is 5-30:1.
Abstract:
A method for producing ketones includes a) providing a feedstock of biological origin having fatty acids and/or fatty acid derivatives having an average chain length of 24 C-atoms or less; b) subjecting the feedstock to a catalytic ketonization reaction in the presence of aK2O/TiO2-catalyst; and c) obtaining from the ketonization reaction a product stream having ketones, which ketones have a longer average hydrocarbon chain length than the average hydrocarbon chain length in the feedstock, wherein step b) is carried out directly on the feedstock and in the presence of the K2O/TiO2-catalyst as the sole catalyst applied in the ketonization reaction.
Abstract:
Methods and uses of a good lubricity fraction obtainable from thermal treatment of levulinic acid and subsequent hydrogenation and fractionation are disclosed.
Abstract:
The present invention relates to a method for conversion of levulinic acid and to a hydrocarbon composition obtainable by the method. The method comprises a step of providing a feedstock, a conversion step of subjecting the feedstock to a C—C coupling reaction and a hydrotreatment, and a hydrodeoxygenation step. The content of levulinic acid dimer derivatives having 4 oxygen atoms subjected to the hydrodeoxygenation step is 20 wt.-% or more.
Abstract:
The present disclosure relates to thermal conversion of ketoacids, including methods for increasing the molecular weight of ketoacids, the method including the steps of providing in a reactor a feedstock comprising at least one ketoacid. The feedstock is then subjected to one or more C-C-coupling reaction(s) by heating the feedstock to temperature of 200-500° C. in the absence of a catalyst.