Abstract:
A surface is probed with a pulsed electron beam and secondary electrons are detected to produce a detector signal. First portions of the detector signal are substantially dependent on the voltage of the surface being probed, while second portions of the detector signal are substantially independent of the voltage of the surface being probed. In general, the first and second portions of the detector signal include unwanted noise caused by low-level sampling due to beam leakage and/or by scintillator afterglow in the secondary-electron detector. The detector signal is sampled during the first signal portions and is sampled during the second signal portions. The sampled first signal portions are combined with the complement of the sampled second signal portions to produce a measured voltage signal representing voltage of the conductor. In a preferred sampling scheme, alternate electron-beam sampling pulses are held-off. A first gate samples the secondary-electron detector signal when sampling pulses are not held off. A second gate samples the secondary-electron detector signal when sampling pulses are held off, and these samples are inverted. The samples from the first gate are combined with the inverted samples from the second gate to substantially cancel unwanted background noise caused by beam leakage and/or scintillator afterglow after sufficient integration.
Abstract:
An improved electron beam test probe apparatus and a method for use of said apparatus for use in measuring the potential in a specimen which enables measurements to be insensitive to local electric fields in the vicinity of the point at which the potential of the specimen is being measured. The apparatus consists of an electron beam for bombarding the specimen at the point at which the potential of the specimen is to be measured, a magnetic lens for collimating the secondary electrons emitted fom the specimen in response to this bombardment, and a detector system for measuring the energy distribution of the secondary electrons so collimated. Tubular electrodes are employed in the energy distribution detection system. These electrodes have significantly higher field uniformity and intercept a smaller fraction of the secondary electrons than wire mesh electrodes. The electrodes are supported on insulators constructed from slightly conductive plastic which prevent the buildup of static charges which can lead to unpredictable fields. The electron beam used to bombard the specimen is of a substantially lower energy than that used in scanning electron microscopes, thus reducing the problems associated with the high energy electron beam bombardment. Improved electronic delay circuitry which employs a tandem combination of a digital delay technique and an analog delay technique has been developed to allow the electron beam to be turned on in short pulses in precise time synchrony with test signal patterns applied to a circuit being tested. This delay circuitry allows the timing of these short pulses to be specified to an accuracy of 5 picoseconds relative to a trigger pulse which is applied to the delay circuitry several milliseconds earlier. An improved signal averaging circuit has been developed which improves the signal to noise ratio and response time.The apparatus may be used to produce an image of the specimen in the vicinity of the point under bombardment while measuring the potential at said point. The methods taught by the present invention allow the measurement or the potential on buried conductors located beneath an insulating layer. The methods taught also prevent drift in the electron beam resulting from varying surface electric fields on the specimen.
Abstract:
An apparatus for pulsing an electron beam in an electron beam test probe used for examining integrated circuits is disclosed. The apparatus includes a structure having two intersecting channels cut therein. The electron beam passes through a first one of these channels enroute to the integrated circuit being tested. A linear conductor is disposed along the axis of the second channel such that the combination of said conductor and said second channel forms a coaxial transmission line. An electric field is generated in the second channel by applying a suitable potential between the linear conductor and the second channel. This electric field extends into the first channel from the region common to both channels. When a suitable potential is applied between the linear conductor and the second channel, the electric field generated deflects the electrons traveling in the first channel sufficiently to cause said electrons to miss an aperture through which said electrons must pass to reach the circuit being analyzed.
Abstract:
Systems and methods for determining one or more characteristics of a specimen using radiation in the terahertz range are provided. One system includes an illumination subsystem configured to illuminate the specimen with radiation. The system also includes a detection subsystem configured to detect radiation propagating from the specimen in response to illumination of the specimen and to generate output responsive to the detected radiation. The detected radiation includes radiation in the terahertz range. In addition, the system includes a processor configured to determine the one or more characteristics of the specimen using the output.
Abstract:
Disclosed is a semiconductor die having a scanning area. The semiconductor die includes a first plurality of test structures wherein each of the test structures in the first plurality of test structures is located entirely within the scanning area. The semiconductor die further includes a second plurality of test structures wherein each of the test structures in the first plurality of test structures is located only partially within the scanning area. The test structures are arranged so that a scan of the scanning area results in detection of defects outside of the scanning area.
Abstract:
One embodiment relates to an apparatus which utilizes an electron beam for inspection or metrology of a substrate. The apparatus includes a CRT-type gun and deflectors to generate and scan the electron beam. The CRT-type gun may optionally be in a sealed vacuum. Another embodiment relates to a method of inspecting a substrate or measuring an aspect of the substrate. The method includes focusing an electron beam using electrostatic lenses formed by metal plates supported by and separated by fused glass beads or other insulating material. Other embodiments and features are also disclosed.
Abstract:
Disclosed is a semiconductor die having a scanning area. The semiconductor die includes a first plurality of test structures wherein each of the test structures in the first plurality of test structures is located entirely within the scanning area. The semiconductor die further includes a second plurality of test structures wherein each of the test structures in the first plurality of test structures is located only partially within the scanning area. The test structures are arranged so that a scan of the scanning area results in detection of defects outside of the scanning area.
Abstract:
Disclosed is a semiconductor die having a lower test structure formed in a lower metal layer of the semiconductor die. The lower conductive test structure has a first end and a second end. The first end is coupled to a predetermined voltage level. The semiconductor die also includes an insulating layer formed over the lower metal layer. The die further includes an upper test structure formed in an upper metal layer of the semiconductor die. The upper conductive test structure is coupled with the second end of the lower conductive test structure. The upper metal layer is formed over the insulating layer. In a specific implementation, the first end of the lower test structure is coupled to ground. In another embodiment, the semiconductor die also includes a substrate and a first via coupled between the first end of the lower test structure and the substrate. In yet another aspect, the lower test structure is an extended metal line, and the upper test structure is a voltage contrast element. Methods for inspecting and fabricating such semiconductor die are also disclosed.
Abstract:
An electron-beam test probe system (400) in which a pulsed laser-beam source (404) and a photocathode assembly (430) are used with an electron-beam column (426) to produce a pulsed electron beam at a stabilized repetition frequency. A pulse picker (414) allows the pulse repetition frequency of the pulsed electron beam to be reduced to a submultiple of the pulsed laser repetition frequency. A test pattern generator (416) is programmable to apply a desired pattern of test vector patterns to an electronic circuit to be probed, the test vector patterns being synchronized with the stabilized laser-beam pulse repetition frequency. A timebase circuit (412) allows the test vector patterns to be time-shifted relative to the pulsed electron beam. The electronic circuit under test can thus be probed at any desired point in the applied test vector pattern by control of the pulse picker and by time-shifting the test vector pattern.