Abstract:
A semiconductor chip, a method for producing a semiconductor chip and an apparatus having a plurality of semiconductor chips are disclosed. In an embodiment a chip includes a substrate and a semiconductor layer arranged at the substrate, wherein the substrate includes, at a side facing the semiconductor layer, a top side with a width B1 in a first lateral direction and, at a side opposite to the top side, a bottom side with a width B3 in the first lateral direction, wherein the substrate has a width B2 in the first lateral direction at a half height between the top side and the bottom side, and wherein the following applies to widths B1, B2 and B3: B1-B2 B3.
Abstract:
A semiconductor layer sequence includes a first nitridic compound semiconductor layer, a second nitridic compound semiconductor layer, and an intermediate layer arranged between the first and second nitridic compound semiconductor layers. Beginning with the first nitridic compound semiconductor layer, the intermediate layer and the second nitridic compound semiconductor layer are arranged one after the other in a direction of growth of the semiconductor layer sequence and are adjacent to each other in direct succession. The intermediate layer has a lattice constant different from the lattice constant of the first nitridic compound semiconductor layer at least at some points. The second nitridic compound semiconductor layer is lattice-adapted to the intermediate layer at least at some points.
Abstract:
In at least one embodiment of the method, said method includes the following steps: A) producing radiation-active islands (4) having a semiconductor layer sequence (3) on a growth substrate (2), wherein the islands (4) each comprise at least one active zone (33) of the semiconductor layer sequence (3), and an average diameter of the islands (4), as viewed in a top view of the growth substrate, amounts to between 50 nm and 10 μm inclusive, B) producing a separating layer (5) on a side of the islands (4) facing the growth substrate (2), wherein the separating layer (5) surrounds the islands (4) all around, as viewed in a top view of the growth substrate (2), C) attaching a carrier substrate (6) to a side of the islands (4) facing away from the growth substrate (2), and D) detaching the growth substrate (2) from the islands (4), wherein at least a part of the separating layer (5) is destroyed and/or at least temporarily softened during the detachment.
Abstract:
An optoelectronic component includes a layer structure which has a first gallium nitride layer and an aluminum-containing nitride intermediate layer. In this case, the aluminum-containing nitride intermediate layer adjoins the first gallium nitride layer. The layer structure has an undoped second gallium nitride layer which adjoins the aluminum-containing nitride intermediate layer.
Abstract:
A radiation-emitting semiconductor chip includes a carrier and a semiconductor body having a semiconductor layer sequence, wherein an emission region and a protective diode region are formed in the semiconductor body having the semiconductor layer sequence; the semiconductor layer sequence includes an active region that generates radiation and is arranged between a first semiconductor layer and a second semiconductor layer; the first semiconductor layer is arranged on a side of the active region facing away from the carrier; the emission region has a recess extending through the active region; the first semiconductor layer, in the emission region, electrically conductively connects to a first connection layer, wherein the first connection layer extends in the recess from the first semiconductor layer toward the carrier; the second semiconductor layer, in the emission region, electrically conductively connects to a second connection layer.
Abstract:
A semiconductor chip with a layer stack includes a first semiconductor layer sequence and a second semiconductor layer sequence. The first semiconductor layer sequence includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type and an active zone arranged therebetween. The second semiconductor layer sequence includes the second semiconductor region of the second conductivity type, a third semiconductor region of the first conductivity type and a second active zone arranged therebetween.
Abstract:
A method is provided for producing a nitride compound semiconductor device. A growth substrate has a silicon surface. A buffer layer, which comprises AlxInyGa1-x-yN with 0≦x≦1, 0≦y≦1 and x+y≦1, is grown on onto the silicon surface of the substrate. A semiconductor layer sequence is grown onto the buffer layer. The buffer layer includes a material composition that varies in such a way that a lateral lattice constant of the buffer layer increases stepwise or continuously in a first region and decreases stepwise or continuously in a second region, which follows the first region in the growth direction. At an interface with the semiconductor layer sequence, the buffer layer includes a smaller lateral lattice constant than a semiconductor layer of the semiconductor layer sequence adjoining the buffer layer.
Abstract translation:提供了一种用于生产氮化物化合物半导体器件的方法。 生长衬底具有硅表面。 包含Al x In y Ga 1-x-y N的缓冲层,其具有0和n1E; x和nlE; 1,0和n1E; y和nlE; 1和x + y和nlE; 1生长在衬底的硅表面上。 半导体层序列生长到缓冲层上。 缓冲层包括以使得缓冲层的横向晶格常数在第一区域中逐步或连续地增加的方式变化的材料组成,并且在沿着生长方向的第一区域的第二区域中逐步或连续地减小。 在与半导体层序列的界面处,缓冲层包括比邻接缓冲层的半导体层序列的半导体层更小的横向晶格常数。
Abstract:
An optoelectronic semiconductor chip includes a semiconductor layer stack including a nitride compound semiconductor material on a carrier substrate, wherein the semiconductor layer stack includes an active layer that emits an electromagnetic radiation, the semiconductor layer stack being arranged between a layer of a first conductivity and a layer of a second conductivity, the layer of the first conductivity is adjacent a front of the semiconductor layer stack, the layer of the first conductivity electrically connects to a first electrical connection layer covering at least a portion of a back of the semiconductor layer stack, and the layer of the second conductivity type electrically connects to a second electrical connection layer arranged at the back.
Abstract:
An optoelectronic semiconductor chip includes a multiplicity of active regions, arranged at a distance from one another, and a reflective layer arranged at an underside of the multiplicity of active regions, wherein at least one of the active regions has a main extension direction, one of the active regions has a core region formed with a first semiconductor material, the active region has an active layer, covering the core region at least in directions transversely with respect to the main extension direction of the active region, the active region has a cover layer formed with a second semiconductor material and covers the active layer at least in directions transversely with respect to the main extension direction of the active region, and the reflective layer reflects electromagnetic radiation generated during operation in the active layer.
Abstract:
A semiconductor chip with a layer stack includes a first semiconductor layer sequence and a second semiconductor layer sequence. The first semiconductor layer sequence includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type and an active zone arranged therebetween. The second semiconductor layer sequence includes the second semiconductor region of the second conductivity type, a third semiconductor region of the first conductivity type and a second active zone arranged therebetween.