Abstract:
Presented herein is a method for obtaining a dissolved selenium liquid mixture from solid selenium. The method involves mixing an amine solvent and a thiol solvent with the solid selenium to produce a liquid intermediate solution and removing a sulfur containing compound from the liquid intermediate solution to produce a dissolved selenium liquid mixture. A method for obtaining dissolved sulfur liquid mixture by mixing an amine with a thiol to produce a liquid solution that dissolves sulfur to produce a dissolved sulfur liquid mixture is also presented. In addition, a method for obtaining a dissolved sulfur and selenium liquid mixture from solid selenium and solid sulfur by mixing an amine solvent with a thiol solvent is presented.
Abstract:
Described herein is a process for conversion and upgrading of biomass to products. The process involves converting the biomass to primary lignin-derivatives and primary cellulose/hemicellulose derivatives, catalytically treating the primary lignin-derivatives to produce secondary lignin-derived products, and treating the primary cellulose/hemicellulose- derivatives to produce secondary cellulose/hemicellulose-derived products.
Abstract:
A method of direct deposition of multinary metal polyselenide films, including precipitating alkylammonium polyselenide with an antisolvent, redissolution of precipitated alkylammonium polyselenide with a solvent, dissolving at least one metal source, such as elemental metal, a metal containing compound, or a combination thereof, in the solution containing polyselenide ions to provide a precursor solution, and using the precursor solution to fabricate metal polyselenides. The metal source is selected from the group consisting of Ag, Cu, Zn, Cd, In, Ga, Sn, Ge, As, Cu2Se, Cu2O, CuCl, and combinations thereof. The precursor solution is substantially sulfur-free.
Abstract:
Methods for synthesizing chalcogenide perovskites and chalcogenide perovskites synthesized thereby. Such s method includes providing a precursor solution containing a metal precursor, depositing the precursor solution onto a substrate to form a precursor film, and heating the precursor film in the presence of a chalcogen source to form a chalcogenide perovskite. The precursor solution is oxygen-free, and the steps of depositing and heating are conducted in an inert atmosphere.
Abstract:
Systems and processes for producing one or more alkenes from shale gas. The process includes at least two dehydrogenation reactors whereby propane, or a mixture of propane and butane, can be dehydrogenated in a first reactor and ethane can be dehydrogenated in a second reactor. The lighter components which serve as chemical inert and thermal mass are separated from the dehydrogenated product after each reactor.
Abstract:
A direct solution method based on a versatile amine-thiol solvent mixture which dissolves elemental metals, metal salts, organometallic complexes, metal chalcogenides, and metal oxides is described. The metal containing and metal chalcogenide precursors can be prepared by dissolving single or multiple metal sources, chalcogens, and/or metal chalcogenide compounds separately, simultaneously, or stepwise. Multinary metal chalcogenides containing at least one of copper, zinc, tin, indium, gallium, cadmium, germanium, and lead, with at least one of sulfur, selenium, or both are obtained from the above-mentioned metal chalcogenide precursors in the form of thin films, nanoparticles, inks, etc. Furthermore, infiltration of metal containing compounds into a porous structure can be achieved using the amine-thiol based precursors. In addition, due to the appreciable solubility of metal sources, metal chalcogenides, and metal oxides in the mixture of amine(s) and thiol(s), this solvent mixture can be used to remove these materials from a system.
Abstract:
For an n-component mixture (n≧3), an array of new distillation columns is disclosed with vertical partitions that allow independent control of the vapor flowrates in each partitioned zone, while operating the columns to produce constituent product streams. Specifically, all such more operable columns with vertical partitions for ternary and quaternary feed mixtures are illustrated. For a ternary feed, through extensive computation, the minimum heat duty for each of the new columns is same as for the FTC configuration. The new columns with vertical partitions become even more attractive when the vapor split between column sections must be controlled within a narrow range. Finally, it is disclosed how a new column with vertical partition(s) drawn for an n-component mixture can be adapted to distil feed mixtures that contain more than n-components.
Abstract:
Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.
Abstract:
Disclosed herein are synthesis methods and uses of nanoparticles containing copper, arsenic, and chalcogen, in particular their use for making thin films useful for electronics, photovoltaics, and solar energy conversion devices.
Abstract:
Presented herein is a method for obtaining a dissolved selenium liquid mixture from solid selenium. The method involves mixing an amine solvent and a thiol solvent with the solid selenium to produce a liquid intermediate solution and removing a sulfur containing compound from the liquid intermediate solution to produce a dissolved selenium liquid mixture. A method for obtaining dissolved sulfur liquid mixture by mixing an amine with a thiol to produce a liquid solution that dissolves sulfur to produce a dissolved sulfur liquid mixture is also presented. In addition, a method for obtaining a dissolved sulfur and selenium liquid mixture from solid selenium and solid sulfur by mixing an amine solvent with a thiol solvent is presented.