Abstract:
A linear spring member having an annular region with a first thickness connected in series by cylindrical regions having a second thickness, wherein the first thickness is less than the second thickness. Outer portions of adjacent annular regions are coupled together by a first cylindrical region and inner portions of adjacent annular regions are coupled together by a second cylindrical region such that the effective spring rate of the bi-directional spring device increases symmetrically as it is displaced in either compression or tension.
Abstract:
Aspects and embodiments are generally directed to modular imaging spectrometer assemblies and methods of operation thereof. In one example, a modular imaging spectrometer assembly includes foreoptics to receive electromagnetic radiation and produce a real exit pupil, the foreoptics having a first f-number, a first imaging spectrometer to receive and disperse the electromagnetic radiation into a first plurality of spectral bands at a first image plane, the first imaging spectrometer having a second f-number independent of the first f-number, a second imaging spectrometer separated from the first imaging spectrometer, the second imaging spectrometer to receive and disperse the electromagnetic radiation into a second plurality of spectral bands, the second imaging spectrometer having a third f-number independent of the first f-number, and at least one slit aperture positioned to receive the electromagnetic radiation from the real exit pupil and direct the electromagnetic radiation to the first and second imaging spectrometers.
Abstract:
A precision adjustment screw mechanism comprises a platform carried by a base. The platform is selectively movable towards and away from the base, and is selectively tiltable with respect to the base. A push-pull screw is secured to and between the platform and the base, to selectively displace the platform towards and away from the base. The push-pull screw has a ball-and-socket type joint between the platform and the base, with the platform tiltable with respect to the base about the ball-and-socket type joint. A cylindrical bellows has a proximal end sealed to the base and a distal end sealed to the platform, and circumscribes the push-pull screw between the base and the platform. The bellows can react torque exerted on the platform by a fastener of the push-pull screw.
Abstract:
A precision adjustment screw mechanism comprises a platform carried by a base. The platform is selectively movable towards and away from the base, and is selectively tiltable with respect to the base. A push-pull screw is secured to and between the platform and the base, to selectively displace the platform towards and away from the base. The push-pull screw has a ball-and-socket type joint between the platform and the base, with the platform tiltable with respect to the base about the ball-and-socket type joint. A cylindrical bellows has a proximal end sealed to the base and a distal end sealed to the platform, and circumscribes the push-pull screw between the base and the platform. The bellows can react torque exerted on the platform by a fastener of the push-pull screw.
Abstract:
A linear spring member having an annular region with a first thickness connected in series by cylindrical regions having a second thickness, wherein the first thickness is less than the second thickness. Outer portions of adjacent annular regions are coupled together by a first cylindrical region and inner portions of adjacent annular regions are coupled together by a second cylindrical region such that the effective spring rate of the bi-directional spring device increases symmetrically as it is displaced in either compression or tension.
Abstract:
A solar rejection system includes an enclosure for housing a sensor, and a movable sunshade. The housing has an opening or aperture for admitting light to the sensor, and the sunshade is moved as needed to prevent harmful solar illumination of the sensor. The sunshade may be a flat panel. The sunshade panel is mounted to a hinge that is located on one side of a large diameter bearing that allows the shade to be rotated around the aperture of the sensor to always prevent the sun from illuminating the aperture. The hinge allows the shade to be tilted to either allow the sensor to see further off axis without obscuration or to block the sun when it moves in front of the sensor. Full closure of the sunshade on its hinge allows it to also function as an aperture door, blocking the opening or aperture.
Abstract:
A reaction compensated steerable platform device is disclosed. The reaction compensated steerable platform device can include a base, a steerable platform movably coupled to the base, and a reaction mass movably coupled to the base. The reaction compensated steerable platform device can also include a primary actuator coupled to the steerable platform and the base to cause movement of the steerable platform. The reaction compensated steerable platform device can further include a secondary actuator coupled to the reaction mass and the base to cause movement of the reaction mass. In addition, the reaction compensated steerable platform device can also include a load sensor configured to provide feedback for actuation of the secondary actuator, such that the reaction mass moves to compensate for a load induced on a support structure by the movement of the steerable platform.
Abstract:
A reaction compensated steerable platform device is disclosed. The reaction compensated steerable platform device can include a base, a steerable platform movably coupled to the base, and a reaction mass movably coupled to the base. The reaction compensated steerable platform device can also include a primary actuator to cause movement of the steerable platform, and a trim actuator coupled to the reaction mass and the base. In addition, the reaction compensated steerable platform device can include a sensor configured to provide feedback for actuation of the trim actuator. The reaction mass can be configured to move by actuation independent of the trim actuator to compensate for a first portion of a load induced by the movement of the steerable platform. Actuation of the trim actuator can be controlled by the sensor, such that the reaction mass moves to compensate for a second portion of the load induced by the movement of the steerable platform.
Abstract:
A mirror mount system is disclosed. The mirror mount system can include a rib forming a support structure of a mirror. The rib can have an attachment portion. The mirror mount system can also include an attachment fitting bonded to the attachment portion of the rib with an adhesive. The attachment portion can be sufficiently isolated from other portions of the rib structure such that loading in the other portions of the rib structure tending to distort the mirror, which is generated internal to the attachment fitting and the attachment portion, is minimized while providing adequate structural support for the mirror.
Abstract:
According to one embodiment, an apparatus includes a sensor having one or more thermally sensitive components. The sensor is gimbal mounted on a space or air-borne vehicle and includes a component. The component is configured to at least partially adjust a center-of-gravity of the sensor and to at least partially receive and store thermal energy from the one or more thermally sensitive components. The Apparatus also includes a radiator configured to dissipate thermal energy to the ambient environment. The component is thermally coupled between the radiator and the one or more other thermally sensitive components. The radiator is configured to receive thermal energy from the component.