Abstract:
Disclosed is a method for selective electrofusion of at least two fusion partners having cell-like membranes and cellular or subcellular dimensions, comprising the following steps: A) the fusion partners are brought into contact with each other and B) an electrical field of a strength sufficient to obtain fusion and highly focused on the fusion partners is applied. The fusion partners are independently selected from the group consisting of a single cell, a liposome, a proteoliposome, a synthetic vesicle, an egg cell, an enucleated egg cell, a sperm cell at any development stage and a plant protoplast.
Abstract:
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making nanostructures (e.g., nanoparticles, nanofibers), systems for making nanostructures, and the like.
Abstract:
In an embodiment, a system includes one or one or more reservoirs responsive to control circuitry for receiving target(s) associated with one or more blood or lymph vessel of a subject. The system includes one or more first energy source associated with the one or more reservoirs for providing energy to elicit image response(s) associated with the target(s). The system includes one or more sensors associated with the one or more reservoirs for capturing the image response(s). Control circuitry is provided and coupled to the sensors for at least partially identifying the target(s) based at least partially on the captured image response(s) during an expected transit time of the target(s) through a detection area. Attachment unit(s) responsive to the control circuitry are provided for attaching the one or more reservoirs to the blood or lymph vessel.
Abstract:
In an embodiment, an untethered device includes one or more first energy sources configured to provide energy to elicit one or more image responses associated with one or more blood vessels or lymph vessels. The device includes one or more sensors configured to capture the one or more image responses. Control circuitry is provided and coupled to the sensors for at least partially identifying one or more targets at least partially based on the captured one or more image responses. One or more inserts are provided, which are configured to be disposed in the one or more blood vessels or lymph vessels, and slow or trap the blood vessels or lymph vessels therein. One or more second energy sources are provided for ablating the one or more targets when they are slowed or trapped by the one or more inserts.
Abstract:
Articles having porous or foam-like elements are provided. The design, fabrication and structures of the articles exploit properties of reactive composite materials (RCM) and their reaction products. In particular, fluids generated by reacting RCM are utilized to create or fill voids in the porous or foam-like elements.
Abstract:
The present invention relates to the separation, quantitative measurement, and analysis of trace species using a combination of three steps in succession. First, trace species are separated from other species that are present. Second, the trace species are chemically modified to convert them into specific species that are advantageous for the third and final step. In this last step, cavity enhanced optical detection of the converted species is performed to detect and measure the concentrations of the species of interest. Because the last step has spectroscopic resolution, the concentration of isotopologues in each converted species can be determined. Further processing can provide the ratios between pairs of isotopologues, in particular the ratio of the rare isotopologues to the most abundant isotopologue.
Abstract:
A Bradbury-Nielson gate (BNG) includes a set of evenly spaced, co-planar, and parallel wires. The wires alternate in a repeating ABAB pattern, where all of the A wires are electrically connected to each other, all of the B wires are electrically connected to each other, and the set of A wires is electrically isolated from the set of B wires. Improved fabrication of Bradbury-Nielson gates is provided based on two key ideas. The first key idea is the use of wire positioning template surfaces having wire insertion features with enhanced spacing. Wire insertion features having enhanced spacing allow for non-microscopic assembly of finely spaced wire arrays. The second key idea is the use of two template surfaces, each having wires spaced by twice the eventual gate wire spacing. The use of two template surfaces facilitates making the alternating electrical contact required for a BNG.
Abstract:
Bradbury-Nielson gates for the modulation of beams of charged particles, particularly ion beams in mass spectrometry, have been produced with an adjustable wire spacing down to 0.075 mm or a smaller spacing. The gates are robust, they can be fabricated in less than 3 hours, and the method of production is reproducible. In time-of-flight mass spectrometers, fine wire spacing leads to improvements in mass resolution and modulation rates. Gates that were produced using this new method have been installed in a Hadamard transform time-of-flight mass spectrometer in order to demonstrate their utility.
Abstract:
An apparatus and method useful for sample injection in capillary electrophoresis is disclosed. The apparatus comprises an interface device with capillary and tubing inserted therein. Sample is injected through the tubing into the interface and is thereafter introduced into the capillary column in which the capillary electrophoresis separation is performed. The apparatus introduces precise amounts of sample into the capillary and the interface can be designed for split flow or direct sample introduction. Employing the interface device, the injection method permits samples to be introduced into capillaries without the need to disengage or to alter the electric field. The method is suited for adaptation with autosamplers or auto-injection systems.