Abstract:
A display device includes first semiconductor pattern including a first channel portion, a first electrode connected to a driving voltage line, and a second electrode connected to a light emitting element, a first insulating, a first conductive layer including a first gate electrode, a second insulating layer, a second conductive layer including an initialization power line, a third insulating layer, an upper semiconductor layer including a second semiconductor pattern including a second channel portion, a third electrode, and a fourth electrode connected to the first gate electrode, and a third semiconductor pattern including a third channel portion, a fifth electrode connected to the third electrode, and a sixth electrode connected to the second electrode, a fourth insulating layer, and a third conductive layer including a scan line and a control signal line, wherein the upper semiconductor layer does not overlap the first gate electrode and the initialization power line.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A thin film transistor array panel may include a channel layer including an oxide semiconductor and formed in a semiconductor layer, a source electrode formed in the semiconductor layer and connected to the channel layer at a first side, a drain electrode formed in the semiconductor layer and connected to the channel layer at an opposing second side, a pixel electrode formed in the semiconductor layer in a same portion of the semiconductor layer as the drain electrode, an insulating layer disposed on the channel layer, a gate line including a gate electrode disposed on the insulating layer, a passivation layer disposed on the source and drain electrodes, the pixel electrode, and the gate line, and a data line disposed on the passivation layer. A width of the channel layer may be substantially equal to a width of the pixel electrode in a direction parallel to the gate line.
Abstract:
A thin film transistor, a thin film transistor array panel including the same, and a method of manufacturing the same are provided, wherein the thin film transistor includes a channel region including an oxide semiconductor, a source region and a drain region connected to the channel region and facing each other at both sides with respect to the channel region, an insulating layer positioned on the channel region, and a gate electrode positioned on the insulating layer, wherein an edge boundary of the gate electrode and an edge boundary of the channel region are substantially aligned.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A display device includes pixels at least one of which includes a light emitting element connected between a first power source and a second power source, a first transistor connected between the first power source and the light emitting element and controlling a driving current flowing through the light emitting element in response to a voltage of a first node, a switching transistor connected to the first node and including and active layer that includes first and second conductive regions spaced apart from each other, first and second channel regions disposed between the first and second conductive regions, and a common conductive region disposed between the first and second channel regions, and a conductive pattern overlapping the active layer to face the common conductive region.
Abstract:
A display device includes a substrate including a display area including a plurality of pixels, a peripheral area around the display area, and a bending area disposed in the peripheral area. A plurality of transistors is disposed in each pixel; a driving voltage line is disposed in the display area and transmits a driving voltage; a driving voltage transmission line is disposed in the peripheral area and is connected to the driving voltage line; and a conductive overlap layer overlaps at least one of the plurality of transistors.
Abstract:
A thin film transistor according to an exemplary embodiment of the present invention includes an oxide semiconductor. A source electrode and a drain electrode face each other. The source electrode and the drain electrode are positioned at two opposite sides, respectively, of the oxide semiconductor. A low conductive region is positioned between the source electrode or the drain electrode and the oxide semiconductor. An insulating layer is positioned on the oxide semiconductor and the low conductive region. A gate electrode is positioned on the insulating layer. The insulating layer covers the oxide semiconductor and the low conductive region. A carrier concentration of the low conductive region is lower than a carrier concentration of the source electrode or the drain electrode.
Abstract:
A display device includes a first transistor including a first active layer, a first gate electrode overlapping the first active layer, a gate insulating layer between the first active layer and the first gate electrode, a first source electrode, and a first drain electrode; a second transistor including a second active layer, a second gate electrode overlapping the second active layer, a second source electrode and a second drain electrode; a capacitor including a first capacitor electrode connected to the second transistor; a lower electrode disposed under the first active layer; a connecting member connecting the first active layer to the lower electrode; and a first metal pattern contacting the connecting member and disposed on a same layer with the first gate electrode.
Abstract:
A display device includes: a first semiconductor layer on a first buffer layer, and including a first active layer; a first gate insulating layer on the first semiconductor layer, and covering the first active layer; a first conductive layer on the first gate insulating layer, and including a first gate electrode; a second conductive layer on the first conductive layer, and including a first source/drain electrode; a first interlayer insulating layer on the first conductive layer; a second semiconductor layer on the first interlayer insulating layer, and including a second active layer; a second gate insulating layer on the second semiconductor layer, and covering the second active layer; and a third conductive layer on the second gate insulating layer, and including a second gate electrode and a second source/drain electrode. The first gate insulating layer and the second gate insulating layer include different insulating materials from each other.