Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a fin-shaped structure thereon and a shallow trench isolation (STI) around the fin-shaped structure, in which the fin-shaped structure has a top portion and a bottom portion; forming a first doped layer on the STI and the top portion; and performing a first anneal process.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a gate structure on the substrate; forming an interlayer dielectric (ILD) layer around the gate structure; removing the gate structure to form a recess; forming a stress layer in the recess, wherein the stress layer comprises metal; and forming a work function layer on the stress layer.
Abstract:
The present invention provides some methods for forming at least two different nanowire structures with different diameters on one substrate. Since the diameter of the nanowire structure will influence the threshold voltage (Vt) and the drive currents of a nanowire field effect transistor, in this invention, at least two nanowire structures with different diameters can be formed on one substrate. Therefore, in the following steps, these nanowire structures can be applied in different nanowire field effect transistors with different Vt and drive currents. This way, the flexibility of the nanowire field effect transistors can be improved.
Abstract:
The present invention provides some methods for forming at least two different nanowire structures with different diameters on one substrate. Since the diameter of the nanowire structure will influence the threshold voltage (Vt) and the drive currents of a nanowire field effect transistor, in this invention, at least two nanowire structures with different diameters can be formed on one substrate. Therefore, in the following steps, these nanowire structures can be applied in different nanowire field effect transistors with different Vt and drive currents. This way, the flexibility of the nanowire field effect transistors can be improved.
Abstract:
A through silicon via structure is disclosed. The through silicon via includes: a substrate; a first dielectric layer disposed on the substrate and having a plurality of first openings, in which a bottom of the plurality of first openings is located lower than an original surface of the substrate; a via hole disposed through the first dielectric layer and the substrate, in which the via hole not overlapping for all of the plurality of first openings; a second dielectric layer disposed within the plurality of first openings and on a sidewall of the via hole while filling the plurality of first openings; and a conductive material layer disposed within the via hole having the second dielectric layer on the sidewall of the via hole, thereby forming a through silicon via.
Abstract:
A semiconductor device includes a fin-shaped structure on the substrate, a shallow trench isolation (STI) around the fin-shaped structure, a single diffusion break (SDB) structure in the fin-shaped structure for dividing the fin-shaped structure into a first portion and a second portion; a first gate structure on the fin-shaped structure, a second gate structure on the STI, and a third gate structure on the SDB structure. Preferably, a width of the third gate structure is greater than a width of the second gate structure and each of the first gate structure, the second gate structure, and the third gate structure includes a U-shaped high-k dielectric layer, a U-shaped work function metal layer, and a low-resistance metal layer.
Abstract:
A semiconductor device includes a gate structure on a substrate, a single diffusion break (SDB) structure adjacent to the gate structure, a first spacer adjacent to the gate structure, a second spacer adjacent to the SDB structure, a source/drain region between the first spacer and the second spacer, an interlayer dielectric (ILD) layer around the gate structure and the SDB structure, and a contact plug in the ILD layer and on the source/drain region. Preferably, a top surface of the second spacer is lower than a top surface of the first spacer.
Abstract:
A semiconductor device includes a gate isolation structure on a shallow trench isolation (STI), a first epitaxial layer on one side of the gate isolation structure, a second epitaxial layer on another side of the gate isolation structure, first fin-shaped structures directly under the first epitaxial layer, and second fin-shaped structures directly under the second epitaxial layer, in which the STI surrounds the first fin-shaped structures and the second fin-shaped structures.
Abstract:
A semiconductor device includes: a fin-shaped structure on the substrate; a shallow trench isolation (STI) around the fin-shaped structure; a single diffusion break (SDB) structure in the fin-shaped structure for dividing the fin-shaped structure into a first portion and a second portion; a first gate structure on the fin-shaped structure; a second gate structure on the STI; and a third gate structure on the SDB structure, wherein a width of the third gate structure is greater than a width of the second gate structure.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a first region and a second region; forming a first fin-shaped structure on the first region and a second fin-shaped structure on the second region; forming a first buffer layer on the first fin-shaped structure and the second fin-shaped structure; removing the first buffer layer on the first region; and performing a curing process so that a width of the first fin-shaped structure is different from a width of the second fin-shaped structure.